PHASER:感知散列算法评估与结果--一个开源取证框架

IF 2 4区 医学 Q3 COMPUTER SCIENCE, INFORMATION SYSTEMS
Sean McKeown, Peter Aaby, Andreas Steyven
{"title":"PHASER:感知散列算法评估与结果--一个开源取证框架","authors":"Sean McKeown,&nbsp;Peter Aaby,&nbsp;Andreas Steyven","doi":"10.1016/j.fsidi.2023.301680","DOIUrl":null,"url":null,"abstract":"<div><p>The automated comparison of visual content is a contemporary solution to scale the detection of illegal media and extremist material, both for detection on individual devices and in the cloud. However, the problem is difficult, and perceptual similarity algorithms often have weaknesses and anomalous edge cases that may not be clearly documented. Additionally, it is a complex task to perform an evaluation of such tools in order to best utilise them. To address this, we present PHASER, a still-image perceptual hashing framework enabling forensics specialists and scientists to conduct experiments on bespoke datasets for their individual deployment scenarios. The framework utilises a modular approach, allowing users to specify and define a perceptual hash/image transform/distance metric triplet, which can be explored to better understand their behaviour and interactions. PHASER is open-source and we demonstrate its utility via case studies which briefly explore setting an appropriate dataset size and the potential to optimise the performance of existing algorithms by utilising learned weight vectors for comparing hashes.</p></div>","PeriodicalId":48481,"journal":{"name":"Forensic Science International-Digital Investigation","volume":null,"pages":null},"PeriodicalIF":2.0000,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666281723001993/pdfft?md5=bf4f7f2cae2a9401e3c7e72438aaf79a&pid=1-s2.0-S2666281723001993-main.pdf","citationCount":"0","resultStr":"{\"title\":\"PHASER: Perceptual hashing algorithms evaluation and results - An open source forensic framework\",\"authors\":\"Sean McKeown,&nbsp;Peter Aaby,&nbsp;Andreas Steyven\",\"doi\":\"10.1016/j.fsidi.2023.301680\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The automated comparison of visual content is a contemporary solution to scale the detection of illegal media and extremist material, both for detection on individual devices and in the cloud. However, the problem is difficult, and perceptual similarity algorithms often have weaknesses and anomalous edge cases that may not be clearly documented. Additionally, it is a complex task to perform an evaluation of such tools in order to best utilise them. To address this, we present PHASER, a still-image perceptual hashing framework enabling forensics specialists and scientists to conduct experiments on bespoke datasets for their individual deployment scenarios. The framework utilises a modular approach, allowing users to specify and define a perceptual hash/image transform/distance metric triplet, which can be explored to better understand their behaviour and interactions. PHASER is open-source and we demonstrate its utility via case studies which briefly explore setting an appropriate dataset size and the potential to optimise the performance of existing algorithms by utilising learned weight vectors for comparing hashes.</p></div>\",\"PeriodicalId\":48481,\"journal\":{\"name\":\"Forensic Science International-Digital Investigation\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2024-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2666281723001993/pdfft?md5=bf4f7f2cae2a9401e3c7e72438aaf79a&pid=1-s2.0-S2666281723001993-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Forensic Science International-Digital Investigation\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2666281723001993\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Forensic Science International-Digital Investigation","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666281723001993","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

视觉内容的自动比较是当代扩大非法媒体和极端主义材料检测范围的一种解决方案,既可用于单个设备上的检测,也可用于云中的检测。然而,这个问题很难解决,感知相似性算法往往存在弱点和异常边缘情况,而这些弱点和异常边缘情况可能没有明确的记录。此外,对这些工具进行评估以便更好地加以利用也是一项复杂的任务。为了解决这个问题,我们推出了 PHASER,这是一个静态图像感知散列框架,使取证专家和科学家能够在定制数据集上针对各自的部署方案进行实验。该框架采用模块化方法,允许用户指定和定义感知散列/图像变换/距离度量三元组,并对其进行探索,以更好地了解它们的行为和相互作用。PHASER 是开源的,我们通过案例研究展示了它的实用性,案例研究简要探讨了如何设置适当的数据集大小,以及通过利用学习到的权重向量比较哈希值来优化现有算法性能的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
PHASER: Perceptual hashing algorithms evaluation and results - An open source forensic framework

The automated comparison of visual content is a contemporary solution to scale the detection of illegal media and extremist material, both for detection on individual devices and in the cloud. However, the problem is difficult, and perceptual similarity algorithms often have weaknesses and anomalous edge cases that may not be clearly documented. Additionally, it is a complex task to perform an evaluation of such tools in order to best utilise them. To address this, we present PHASER, a still-image perceptual hashing framework enabling forensics specialists and scientists to conduct experiments on bespoke datasets for their individual deployment scenarios. The framework utilises a modular approach, allowing users to specify and define a perceptual hash/image transform/distance metric triplet, which can be explored to better understand their behaviour and interactions. PHASER is open-source and we demonstrate its utility via case studies which briefly explore setting an appropriate dataset size and the potential to optimise the performance of existing algorithms by utilising learned weight vectors for comparing hashes.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
5.90
自引率
15.00%
发文量
87
审稿时长
76 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信