问题解决了:一种可靠的、确定性的 JPEG 碎片点检测方法

IF 2 4区 医学 Q3 COMPUTER SCIENCE, INFORMATION SYSTEMS
Vincent van der Meer , Jeroen van den Bos , Hugo Jonker , Laurent Dassen
{"title":"问题解决了:一种可靠的、确定性的 JPEG 碎片点检测方法","authors":"Vincent van der Meer ,&nbsp;Jeroen van den Bos ,&nbsp;Hugo Jonker ,&nbsp;Laurent Dassen","doi":"10.1016/j.fsidi.2023.301687","DOIUrl":null,"url":null,"abstract":"<div><p>Recovery of deleted JPEG files is severely hindered by fragmentation. Current state-of-the-art JPEG file recovery methods rely on content-based approaches. That is, they consider whether a sequence of bytes translates into a consistent picture based on its visual representation, treating fragmentation indirectly, with varying results. In contrast, in this paper, we focus on identifying fragmentation points on bit-level, that is, identifying whether a candidate next block of bytes is a valid extension of the current JPEG. Concretely, we extend, implement and exhaustively test a novel deterministic algorithm for finding fragmentation points in JPEGs. Even in the worst case scenario, our implementation finds over 99.4 % of fragmentation points within 4 kB – i.e., within the standard block size on NTFS and exFAT file systems. As such, we consider the problem of detecting JPEG fragmentation points solved.</p></div>","PeriodicalId":48481,"journal":{"name":"Forensic Science International-Digital Investigation","volume":null,"pages":null},"PeriodicalIF":2.0000,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666281723002068/pdfft?md5=cd50e080cf971349294eddc303a4a864&pid=1-s2.0-S2666281723002068-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Problem solved: A reliable, deterministic method for JPEG fragmentation point detection\",\"authors\":\"Vincent van der Meer ,&nbsp;Jeroen van den Bos ,&nbsp;Hugo Jonker ,&nbsp;Laurent Dassen\",\"doi\":\"10.1016/j.fsidi.2023.301687\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Recovery of deleted JPEG files is severely hindered by fragmentation. Current state-of-the-art JPEG file recovery methods rely on content-based approaches. That is, they consider whether a sequence of bytes translates into a consistent picture based on its visual representation, treating fragmentation indirectly, with varying results. In contrast, in this paper, we focus on identifying fragmentation points on bit-level, that is, identifying whether a candidate next block of bytes is a valid extension of the current JPEG. Concretely, we extend, implement and exhaustively test a novel deterministic algorithm for finding fragmentation points in JPEGs. Even in the worst case scenario, our implementation finds over 99.4 % of fragmentation points within 4 kB – i.e., within the standard block size on NTFS and exFAT file systems. As such, we consider the problem of detecting JPEG fragmentation points solved.</p></div>\",\"PeriodicalId\":48481,\"journal\":{\"name\":\"Forensic Science International-Digital Investigation\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2024-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2666281723002068/pdfft?md5=cd50e080cf971349294eddc303a4a864&pid=1-s2.0-S2666281723002068-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Forensic Science International-Digital Investigation\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2666281723002068\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Forensic Science International-Digital Investigation","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666281723002068","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

碎片严重阻碍了已删除 JPEG 文件的恢复。目前最先进的 JPEG 文件恢复方法依赖于基于内容的方法。也就是说,它们根据视觉表现来考虑字节序列是否转化为一致的图片,间接地处理碎片,结果各不相同。相比之下,在本文中,我们专注于在比特级上识别碎片点,即识别候选的下一个字节块是否是当前 JPEG 的有效扩展。具体来说,我们扩展、实现并详尽测试了一种用于在 JPEG 中查找碎片点的新型确定性算法。即使在最坏的情况下,我们的实现也能在 4 kB(即 NTFS 和 exFAT 文件系统的标准块大小)范围内找到 99.4% 以上的碎片点。因此,我们认为检测 JPEG 碎片点的问题已经解决。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Problem solved: A reliable, deterministic method for JPEG fragmentation point detection

Recovery of deleted JPEG files is severely hindered by fragmentation. Current state-of-the-art JPEG file recovery methods rely on content-based approaches. That is, they consider whether a sequence of bytes translates into a consistent picture based on its visual representation, treating fragmentation indirectly, with varying results. In contrast, in this paper, we focus on identifying fragmentation points on bit-level, that is, identifying whether a candidate next block of bytes is a valid extension of the current JPEG. Concretely, we extend, implement and exhaustively test a novel deterministic algorithm for finding fragmentation points in JPEGs. Even in the worst case scenario, our implementation finds over 99.4 % of fragmentation points within 4 kB – i.e., within the standard block size on NTFS and exFAT file systems. As such, we consider the problem of detecting JPEG fragmentation points solved.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
5.90
自引率
15.00%
发文量
87
审稿时长
76 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信