学者在讨论 COVID-19 问题时的反应速度是否快于谷歌趋势?文本大数据的一种方法。

Health data science Pub Date : 2024-02-26 eCollection Date: 2024-01-01 DOI:10.34133/hds.0116
Benson Shu Yan Lam, Amanda Man Ying Chu, Jacky Ngai Lam Chan, Mike Ka Pui So
{"title":"学者在讨论 COVID-19 问题时的反应速度是否快于谷歌趋势?文本大数据的一种方法。","authors":"Benson Shu Yan Lam, Amanda Man Ying Chu, Jacky Ngai Lam Chan, Mike Ka Pui So","doi":"10.34133/hds.0116","DOIUrl":null,"url":null,"abstract":"<p><p><b>Background:</b> The COVID-19 pandemic has posed various difficulties for policymakers, such as the identification of health issues, establishment of policy priorities, formulation of regulations, and promotion of economic competitiveness. Evidence-based practices and data-driven decision-making have been recognized as valuable tools for improving the policymaking process. Nevertheless, due to the abundance of data, there is a need to develop sophisticated analytical techniques and tools to efficiently extract and analyze the data. <b>Methods:</b> Using Oxford COVID-19 Government Response Tracker, we categorize the policy responses into 6 different categories: (a) containment and closure, (b) health systems, (c) vaccines, (d) economic, (e) country, and (f) others. We proposed a novel research framework to compare the response times of the scholars and the general public. To achieve this, we analyzed more than 400,000 research abstracts published over the past 2.5 years, along with text information from Google Trends as a proxy for topics of public concern. We introduced an innovative text-mining method: coherent topic clustering to analyze the huge number of abstracts. <b>Results:</b> Our results show that the research abstracts not only discussed almost all of the COVID-19 issues earlier than Google Trends did, but they also provided more in-depth coverage. This should help policymakers identify core COVID-19 issues and act earlier. Besides, our clustering method can better reflect the main messages of the abstracts than a recent advanced deep learning-based topic modeling tool. <b>Conclusion:</b> Scholars generally have a faster response in discussing COVID-19 issues than Google Trends.</p>","PeriodicalId":73207,"journal":{"name":"Health data science","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10895931/pdf/","citationCount":"0","resultStr":"{\"title\":\"Do Scholars Respond Faster Than Google Trends in Discussing COVID-19 Issues? An Approach to Textual Big Data.\",\"authors\":\"Benson Shu Yan Lam, Amanda Man Ying Chu, Jacky Ngai Lam Chan, Mike Ka Pui So\",\"doi\":\"10.34133/hds.0116\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p><b>Background:</b> The COVID-19 pandemic has posed various difficulties for policymakers, such as the identification of health issues, establishment of policy priorities, formulation of regulations, and promotion of economic competitiveness. Evidence-based practices and data-driven decision-making have been recognized as valuable tools for improving the policymaking process. Nevertheless, due to the abundance of data, there is a need to develop sophisticated analytical techniques and tools to efficiently extract and analyze the data. <b>Methods:</b> Using Oxford COVID-19 Government Response Tracker, we categorize the policy responses into 6 different categories: (a) containment and closure, (b) health systems, (c) vaccines, (d) economic, (e) country, and (f) others. We proposed a novel research framework to compare the response times of the scholars and the general public. To achieve this, we analyzed more than 400,000 research abstracts published over the past 2.5 years, along with text information from Google Trends as a proxy for topics of public concern. We introduced an innovative text-mining method: coherent topic clustering to analyze the huge number of abstracts. <b>Results:</b> Our results show that the research abstracts not only discussed almost all of the COVID-19 issues earlier than Google Trends did, but they also provided more in-depth coverage. This should help policymakers identify core COVID-19 issues and act earlier. Besides, our clustering method can better reflect the main messages of the abstracts than a recent advanced deep learning-based topic modeling tool. <b>Conclusion:</b> Scholars generally have a faster response in discussing COVID-19 issues than Google Trends.</p>\",\"PeriodicalId\":73207,\"journal\":{\"name\":\"Health data science\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-02-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10895931/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Health data science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.34133/hds.0116\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Health data science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.34133/hds.0116","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

背景:COVID-19 大流行给政策制定者带来了各种困难,如确定健康问题、确立政策优先事项、制定法规和提高经济竞争力。循证实践和数据驱动决策已被视为改善决策过程的宝贵工具。然而,由于数据量巨大,有必要开发先进的分析技术和工具,以便有效地提取和分析数据。方法:利用牛津 COVID-19 政府响应跟踪器,我们将政策响应分为 6 个不同的类别:(a) 遏制和关闭;(b) 卫生系统;(c) 疫苗;(d) 经济;(e) 国家;(f) 其他。我们提出了一个新颖的研究框架来比较学者和公众的反应时间。为此,我们分析了过去 2.5 年中发表的 40 多万份研究摘要,以及谷歌趋势(Google Trends)中的文本信息,作为公众关注话题的代表。我们引入了一种创新的文本挖掘方法:连贯主题聚类来分析海量摘要。结果我们的结果表明,研究摘要不仅比谷歌趋势更早地讨论了 COVID-19 的几乎所有问题,而且还提供了更深入的报道。这应有助于政策制定者识别 COVID-19 的核心问题并尽早采取行动。此外,与最新的基于深度学习的主题建模工具相比,我们的聚类方法能更好地反映摘要的主要信息。结论与谷歌趋势相比,学者们在讨论 COVID-19 问题时通常反应更快。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Do Scholars Respond Faster Than Google Trends in Discussing COVID-19 Issues? An Approach to Textual Big Data.

Background: The COVID-19 pandemic has posed various difficulties for policymakers, such as the identification of health issues, establishment of policy priorities, formulation of regulations, and promotion of economic competitiveness. Evidence-based practices and data-driven decision-making have been recognized as valuable tools for improving the policymaking process. Nevertheless, due to the abundance of data, there is a need to develop sophisticated analytical techniques and tools to efficiently extract and analyze the data. Methods: Using Oxford COVID-19 Government Response Tracker, we categorize the policy responses into 6 different categories: (a) containment and closure, (b) health systems, (c) vaccines, (d) economic, (e) country, and (f) others. We proposed a novel research framework to compare the response times of the scholars and the general public. To achieve this, we analyzed more than 400,000 research abstracts published over the past 2.5 years, along with text information from Google Trends as a proxy for topics of public concern. We introduced an innovative text-mining method: coherent topic clustering to analyze the huge number of abstracts. Results: Our results show that the research abstracts not only discussed almost all of the COVID-19 issues earlier than Google Trends did, but they also provided more in-depth coverage. This should help policymakers identify core COVID-19 issues and act earlier. Besides, our clustering method can better reflect the main messages of the abstracts than a recent advanced deep learning-based topic modeling tool. Conclusion: Scholars generally have a faster response in discussing COVID-19 issues than Google Trends.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.70
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信