通过整合小麦基因调控网络和遗传变异,剖析穗状性状的分子基础。

IF 9.4 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY
Plant Communications Pub Date : 2024-05-13 Epub Date: 2024-03-14 DOI:10.1016/j.xplc.2024.100879
Guo Ai, Chao He, Siteng Bi, Ziru Zhou, Ankui Liu, Xin Hu, Yanyan Liu, Liujie Jin, JiaCheng Zhou, Heping Zhang, Dengxiang Du, Hao Chen, Xin Gong, Sulaiman Saeed, Handong Su, Caixia Lan, Wei Chen, Qiang Li, Hailiang Mao, Lin Li, Hao Liu, Dijun Chen, Kerstin Kaufmann, Khaled F Alazab, Wenhao Yan
{"title":"通过整合小麦基因调控网络和遗传变异,剖析穗状性状的分子基础。","authors":"Guo Ai, Chao He, Siteng Bi, Ziru Zhou, Ankui Liu, Xin Hu, Yanyan Liu, Liujie Jin, JiaCheng Zhou, Heping Zhang, Dengxiang Du, Hao Chen, Xin Gong, Sulaiman Saeed, Handong Su, Caixia Lan, Wei Chen, Qiang Li, Hailiang Mao, Lin Li, Hao Liu, Dijun Chen, Kerstin Kaufmann, Khaled F Alazab, Wenhao Yan","doi":"10.1016/j.xplc.2024.100879","DOIUrl":null,"url":null,"abstract":"<p><p>Spike architecture influences both grain weight and grain number per spike, which are the two major components of grain yield in bread wheat (Triticum aestivum L.). However, the complex wheat genome and the influence of various environmental factors pose challenges in mapping the causal genes that affect spike traits. Here, we systematically identified genes involved in spike trait formation by integrating information on genomic variation and gene regulatory networks controlling young spike development in wheat. We identified 170 loci that are responsible for variations in spike length, spikelet number per spike, and grain number per spike through genome-wide association study and meta-QTL analyses. We constructed gene regulatory networks for young inflorescences at the double ridge stage and the floret primordium stage, in which the spikelet meristem and the floret meristem are predominant, respectively, by integrating transcriptome, histone modification, chromatin accessibility, eQTL, and protein-protein interactome data. From these networks, we identified 169 hub genes located in 76 of the 170 QTL regions whose polymorphisms are significantly associated with variation in spike traits. The functions of TaZF-B1, VRT-B2, and TaSPL15-A/D in establishment of wheat spike architecture were verified. This study provides valuable molecular resources for understanding spike traits and demonstrates that combining genetic analysis and developmental regulatory networks is a robust approach for dissection of complex traits.</p>","PeriodicalId":52373,"journal":{"name":"Plant Communications","volume":null,"pages":null},"PeriodicalIF":9.4000,"publicationDate":"2024-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11121755/pdf/","citationCount":"0","resultStr":"{\"title\":\"Dissecting the molecular basis of spike traits by integrating gene regulatory networks and genetic variation in wheat.\",\"authors\":\"Guo Ai, Chao He, Siteng Bi, Ziru Zhou, Ankui Liu, Xin Hu, Yanyan Liu, Liujie Jin, JiaCheng Zhou, Heping Zhang, Dengxiang Du, Hao Chen, Xin Gong, Sulaiman Saeed, Handong Su, Caixia Lan, Wei Chen, Qiang Li, Hailiang Mao, Lin Li, Hao Liu, Dijun Chen, Kerstin Kaufmann, Khaled F Alazab, Wenhao Yan\",\"doi\":\"10.1016/j.xplc.2024.100879\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Spike architecture influences both grain weight and grain number per spike, which are the two major components of grain yield in bread wheat (Triticum aestivum L.). However, the complex wheat genome and the influence of various environmental factors pose challenges in mapping the causal genes that affect spike traits. Here, we systematically identified genes involved in spike trait formation by integrating information on genomic variation and gene regulatory networks controlling young spike development in wheat. We identified 170 loci that are responsible for variations in spike length, spikelet number per spike, and grain number per spike through genome-wide association study and meta-QTL analyses. We constructed gene regulatory networks for young inflorescences at the double ridge stage and the floret primordium stage, in which the spikelet meristem and the floret meristem are predominant, respectively, by integrating transcriptome, histone modification, chromatin accessibility, eQTL, and protein-protein interactome data. From these networks, we identified 169 hub genes located in 76 of the 170 QTL regions whose polymorphisms are significantly associated with variation in spike traits. The functions of TaZF-B1, VRT-B2, and TaSPL15-A/D in establishment of wheat spike architecture were verified. This study provides valuable molecular resources for understanding spike traits and demonstrates that combining genetic analysis and developmental regulatory networks is a robust approach for dissection of complex traits.</p>\",\"PeriodicalId\":52373,\"journal\":{\"name\":\"Plant Communications\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":9.4000,\"publicationDate\":\"2024-05-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11121755/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Plant Communications\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1016/j.xplc.2024.100879\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/3/14 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Communications","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.xplc.2024.100879","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/3/14 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

穗的结构影响每穗粒重和粒数,而这是面包小麦(Triticum aestivum L.)谷物产量的两个主要组成部分。 然而,小麦基因组的复杂性和各种环境因素的影响给绘制影响穗性状的因果基因图谱带来了挑战。在此,我们通过整合控制小麦幼穗发育的基因组变异和基因调控网络(GRN)信息,系统地鉴定了参与穗性状形成的基因。通过全基因组关联研究(GWAS)和元 QTL 分析,我们获得了 170 个基因位点,这些基因位点负责穗长(SL)、每穗小穗数(SNS)和每穗粒数(GNS)的变化。通过整合转录组、组蛋白修饰、染色质可及性、eQTL和蛋白-蛋白相互作用组,分别构建了小穗分生组织和小花分生组织占优势的双脊期(DRS)和小花初生期(FPS)幼嫩花序的GRNs。引人注目的是,我们从网络中发现了169个枢纽基因,它们的多态性与穗性状的变异显著相关,并且位于170个QTL区域中的76个。此外,我们还验证了TaZF-B1、VRT-B2和TaSPL15-A/D在建立小麦穗结构中的功能。该研究为了解小麦穗性状提供了宝贵的分子资源,而将遗传分析与发育调控网络相结合的方法对剖析复杂性状具有很强的说服力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Dissecting the molecular basis of spike traits by integrating gene regulatory networks and genetic variation in wheat.

Spike architecture influences both grain weight and grain number per spike, which are the two major components of grain yield in bread wheat (Triticum aestivum L.). However, the complex wheat genome and the influence of various environmental factors pose challenges in mapping the causal genes that affect spike traits. Here, we systematically identified genes involved in spike trait formation by integrating information on genomic variation and gene regulatory networks controlling young spike development in wheat. We identified 170 loci that are responsible for variations in spike length, spikelet number per spike, and grain number per spike through genome-wide association study and meta-QTL analyses. We constructed gene regulatory networks for young inflorescences at the double ridge stage and the floret primordium stage, in which the spikelet meristem and the floret meristem are predominant, respectively, by integrating transcriptome, histone modification, chromatin accessibility, eQTL, and protein-protein interactome data. From these networks, we identified 169 hub genes located in 76 of the 170 QTL regions whose polymorphisms are significantly associated with variation in spike traits. The functions of TaZF-B1, VRT-B2, and TaSPL15-A/D in establishment of wheat spike architecture were verified. This study provides valuable molecular resources for understanding spike traits and demonstrates that combining genetic analysis and developmental regulatory networks is a robust approach for dissection of complex traits.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Plant Communications
Plant Communications Agricultural and Biological Sciences-Plant Science
CiteScore
15.70
自引率
5.70%
发文量
105
审稿时长
6 weeks
期刊介绍: Plant Communications is an open access publishing platform that supports the global plant science community. It publishes original research, review articles, technical advances, and research resources in various areas of plant sciences. The scope of topics includes evolution, ecology, physiology, biochemistry, development, reproduction, metabolism, molecular and cellular biology, genetics, genomics, environmental interactions, biotechnology, breeding of higher and lower plants, and their interactions with other organisms. The goal of Plant Communications is to provide a high-quality platform for the dissemination of plant science research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信