PyF2F:一种稳健、简化的荧光团对荧光团距离测量工具,用于从转位实验后的成像复合物中测量蛋白质相互作用。

IF 4 Q1 GENETICS & HEREDITY
NAR Genomics and Bioinformatics Pub Date : 2024-03-12 eCollection Date: 2024-03-01 DOI:10.1093/nargab/lqae027
Altair C Hernandez, Sebastian Ortiz, Laura I Betancur, Radovan Dojčilović, Andrea Picco, Marko Kaksonen, Baldo Oliva, Oriol Gallego
{"title":"PyF2F:一种稳健、简化的荧光团对荧光团距离测量工具,用于从转位实验后的成像复合物中测量蛋白质相互作用。","authors":"Altair C Hernandez, Sebastian Ortiz, Laura I Betancur, Radovan Dojčilović, Andrea Picco, Marko Kaksonen, Baldo Oliva, Oriol Gallego","doi":"10.1093/nargab/lqae027","DOIUrl":null,"url":null,"abstract":"<p><p>Structural knowledge of protein assemblies in their physiological environment is paramount to understand cellular functions at the molecular level. Protein interactions from Imaging Complexes after Translocation (PICT) is a live-cell imaging technique for the structural characterization of macromolecular assemblies in living cells. PICT relies on the measurement of the separation between labelled molecules using fluorescence microscopy and cell engineering. Unfortunately, the required computational tools to extract molecular distances involve a variety of sophisticated software programs that challenge reproducibility and limit their implementation to highly specialized researchers. Here we introduce PyF2F, a Python-based software that provides a workflow for measuring molecular distances from PICT data, with minimal user programming expertise. We used a published dataset to validate PyF2F's performance.</p>","PeriodicalId":33994,"journal":{"name":"NAR Genomics and Bioinformatics","volume":"6 1","pages":"lqae027"},"PeriodicalIF":4.0000,"publicationDate":"2024-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10939353/pdf/","citationCount":"0","resultStr":"{\"title\":\"PyF2F: a robust and simplified fluorophore-to-fluorophore distance measurement tool for Protein interactions from Imaging Complexes after Translocation experiments.\",\"authors\":\"Altair C Hernandez, Sebastian Ortiz, Laura I Betancur, Radovan Dojčilović, Andrea Picco, Marko Kaksonen, Baldo Oliva, Oriol Gallego\",\"doi\":\"10.1093/nargab/lqae027\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Structural knowledge of protein assemblies in their physiological environment is paramount to understand cellular functions at the molecular level. Protein interactions from Imaging Complexes after Translocation (PICT) is a live-cell imaging technique for the structural characterization of macromolecular assemblies in living cells. PICT relies on the measurement of the separation between labelled molecules using fluorescence microscopy and cell engineering. Unfortunately, the required computational tools to extract molecular distances involve a variety of sophisticated software programs that challenge reproducibility and limit their implementation to highly specialized researchers. Here we introduce PyF2F, a Python-based software that provides a workflow for measuring molecular distances from PICT data, with minimal user programming expertise. We used a published dataset to validate PyF2F's performance.</p>\",\"PeriodicalId\":33994,\"journal\":{\"name\":\"NAR Genomics and Bioinformatics\",\"volume\":\"6 1\",\"pages\":\"lqae027\"},\"PeriodicalIF\":4.0000,\"publicationDate\":\"2024-03-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10939353/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"NAR Genomics and Bioinformatics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1093/nargab/lqae027\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/3/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q1\",\"JCRName\":\"GENETICS & HEREDITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"NAR Genomics and Bioinformatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/nargab/lqae027","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/3/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0

摘要

要从分子水平了解细胞功能,就必须了解蛋白质在生理环境中的结构。转位后复合物成像(PICT)中的蛋白质相互作用是一种活细胞成像技术,用于描述活细胞中大分子组装的结构特征。PICT 依靠荧光显微镜和细胞工程测量标记分子之间的分离。遗憾的是,提取分子间距所需的计算工具涉及各种复杂的软件程序,这对可重复性提出了挑战,并限制了高度专业化研究人员的实施。我们在此介绍 PyF2F,这是一款基于 Python 的软件,它提供了一个从 PICT 数据中测量分子距离的工作流程,用户只需具备最低限度的编程专业知识。我们使用一个已发表的数据集来验证 PyF2F 的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
PyF2F: a robust and simplified fluorophore-to-fluorophore distance measurement tool for Protein interactions from Imaging Complexes after Translocation experiments.

Structural knowledge of protein assemblies in their physiological environment is paramount to understand cellular functions at the molecular level. Protein interactions from Imaging Complexes after Translocation (PICT) is a live-cell imaging technique for the structural characterization of macromolecular assemblies in living cells. PICT relies on the measurement of the separation between labelled molecules using fluorescence microscopy and cell engineering. Unfortunately, the required computational tools to extract molecular distances involve a variety of sophisticated software programs that challenge reproducibility and limit their implementation to highly specialized researchers. Here we introduce PyF2F, a Python-based software that provides a workflow for measuring molecular distances from PICT data, with minimal user programming expertise. We used a published dataset to validate PyF2F's performance.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
8.00
自引率
2.20%
发文量
95
审稿时长
15 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信