Guowei Cui, Dengyong Wang, Zengwei Zhu, Wenjian Cao, Tianyu Fu
{"title":"使用可变电压提高反向旋转电化学加工的平整能力","authors":"Guowei Cui, Dengyong Wang, Zengwei Zhu, Wenjian Cao, Tianyu Fu","doi":"10.1007/s00170-024-13395-0","DOIUrl":null,"url":null,"abstract":"<p>Roundness error plays an important role of rotating parts in engineering fields and it has a significant influence on the machining quality and accuracy during electrochemical machining (ECM) process. The precision ECM could be processed only if the initial roundness error is decreased or eliminated and the inter-electrode gap (IEG) becomes steady after reaching an equilibrium state. However, a constant voltage is generally used in ECM process. And a long time and a large allowance are required to level the profile error of workblank if the initial profile error is large. In this study, the focus herein is on the acceleration of the leveling process of the rotary workpiece. A counter-rotating electrochemical machining (CRECM) process method with a variable voltage is proposed to improve the leveling ability. For a rotary workpiece with elliptical contours, the machining voltage can be dynamically adjusted based on the IEG through the approximate regulation of sine waves according to modeling-based analysis. The method aims to improve the leveling ability by expanding the difference in the magnitude of electric current between the high and low points on the profile of the anode workpiece under different voltages. The results of experiments confirmed that the proposed method significantly reduced the leveling time from 36 to 7 min (by 81%), and the depth of dissolution of the highest point on the profile from 1.68 to 0.45 mm while reducing the roundness error from 0.5 to 0.05 mm. The leveling ratio increased from 0.26 to 0.99.</p>","PeriodicalId":50345,"journal":{"name":"International Journal of Advanced Manufacturing Technology","volume":"78 1","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2024-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Improvement on leveling ability in counter-rotating electrochemical machining by using a variable voltage\",\"authors\":\"Guowei Cui, Dengyong Wang, Zengwei Zhu, Wenjian Cao, Tianyu Fu\",\"doi\":\"10.1007/s00170-024-13395-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Roundness error plays an important role of rotating parts in engineering fields and it has a significant influence on the machining quality and accuracy during electrochemical machining (ECM) process. The precision ECM could be processed only if the initial roundness error is decreased or eliminated and the inter-electrode gap (IEG) becomes steady after reaching an equilibrium state. However, a constant voltage is generally used in ECM process. And a long time and a large allowance are required to level the profile error of workblank if the initial profile error is large. In this study, the focus herein is on the acceleration of the leveling process of the rotary workpiece. A counter-rotating electrochemical machining (CRECM) process method with a variable voltage is proposed to improve the leveling ability. For a rotary workpiece with elliptical contours, the machining voltage can be dynamically adjusted based on the IEG through the approximate regulation of sine waves according to modeling-based analysis. The method aims to improve the leveling ability by expanding the difference in the magnitude of electric current between the high and low points on the profile of the anode workpiece under different voltages. The results of experiments confirmed that the proposed method significantly reduced the leveling time from 36 to 7 min (by 81%), and the depth of dissolution of the highest point on the profile from 1.68 to 0.45 mm while reducing the roundness error from 0.5 to 0.05 mm. The leveling ratio increased from 0.26 to 0.99.</p>\",\"PeriodicalId\":50345,\"journal\":{\"name\":\"International Journal of Advanced Manufacturing Technology\",\"volume\":\"78 1\",\"pages\":\"\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2024-03-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Advanced Manufacturing Technology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s00170-024-13395-0\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Advanced Manufacturing Technology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s00170-024-13395-0","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
Improvement on leveling ability in counter-rotating electrochemical machining by using a variable voltage
Roundness error plays an important role of rotating parts in engineering fields and it has a significant influence on the machining quality and accuracy during electrochemical machining (ECM) process. The precision ECM could be processed only if the initial roundness error is decreased or eliminated and the inter-electrode gap (IEG) becomes steady after reaching an equilibrium state. However, a constant voltage is generally used in ECM process. And a long time and a large allowance are required to level the profile error of workblank if the initial profile error is large. In this study, the focus herein is on the acceleration of the leveling process of the rotary workpiece. A counter-rotating electrochemical machining (CRECM) process method with a variable voltage is proposed to improve the leveling ability. For a rotary workpiece with elliptical contours, the machining voltage can be dynamically adjusted based on the IEG through the approximate regulation of sine waves according to modeling-based analysis. The method aims to improve the leveling ability by expanding the difference in the magnitude of electric current between the high and low points on the profile of the anode workpiece under different voltages. The results of experiments confirmed that the proposed method significantly reduced the leveling time from 36 to 7 min (by 81%), and the depth of dissolution of the highest point on the profile from 1.68 to 0.45 mm while reducing the roundness error from 0.5 to 0.05 mm. The leveling ratio increased from 0.26 to 0.99.
期刊介绍:
The International Journal of Advanced Manufacturing Technology bridges the gap between pure research journals and the more practical publications on advanced manufacturing and systems. It therefore provides an outstanding forum for papers covering applications-based research topics relevant to manufacturing processes, machines and process integration.