负调控对癫痫网络动态转变的影响

IF 1.9 4区 数学 Q2 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS
Songan Hou, Haodong Wang, Denggui Fan, Ying Yu, Qingyun Wang
{"title":"负调控对癫痫网络动态转变的影响","authors":"Songan Hou, Haodong Wang, Denggui Fan, Ying Yu, Qingyun Wang","doi":"10.1142/s021812742450038x","DOIUrl":null,"url":null,"abstract":"<p>The transiting mechanism of abnormal brain functional activities, such as the epileptic seizures, has not been fully elucidated. In this study, we employ a probabilistic neural network model to investigate the impact of negative regulation, including negative connections and negative inputs, on the dynamical transition behavior of network dynamics. It is observed that negative connections significantly influence the transition behavior of the network, intensifying the oscillation of discharge probability, corresponding to uneven discharge and epileptic states. Negative inputs, within a certain range, exhibited a similar impact on the dynamic state of the network as negative connections, enhancing network oscillations and resulting in higher fragility. However, larger negative inputs can led to the disappearance of oscillations in the discharge probability, indicating a maintenance of lower fragility. We speculate that negative regulation may be an indispensable factor in the occurrence of epileptic seizures, and future research should give it due consideration.</p>","PeriodicalId":50337,"journal":{"name":"International Journal of Bifurcation and Chaos","volume":null,"pages":null},"PeriodicalIF":1.9000,"publicationDate":"2024-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Effects of Negative Regulation on the Dynamical Transition in Epileptic Network\",\"authors\":\"Songan Hou, Haodong Wang, Denggui Fan, Ying Yu, Qingyun Wang\",\"doi\":\"10.1142/s021812742450038x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The transiting mechanism of abnormal brain functional activities, such as the epileptic seizures, has not been fully elucidated. In this study, we employ a probabilistic neural network model to investigate the impact of negative regulation, including negative connections and negative inputs, on the dynamical transition behavior of network dynamics. It is observed that negative connections significantly influence the transition behavior of the network, intensifying the oscillation of discharge probability, corresponding to uneven discharge and epileptic states. Negative inputs, within a certain range, exhibited a similar impact on the dynamic state of the network as negative connections, enhancing network oscillations and resulting in higher fragility. However, larger negative inputs can led to the disappearance of oscillations in the discharge probability, indicating a maintenance of lower fragility. We speculate that negative regulation may be an indispensable factor in the occurrence of epileptic seizures, and future research should give it due consideration.</p>\",\"PeriodicalId\":50337,\"journal\":{\"name\":\"International Journal of Bifurcation and Chaos\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2024-03-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Bifurcation and Chaos\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1142/s021812742450038x\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Bifurcation and Chaos","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1142/s021812742450038x","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

癫痫发作等异常脑功能活动的转换机制尚未完全阐明。本研究采用概率神经网络模型,研究负调控(包括负连接和负输入)对网络动态过渡行为的影响。研究发现,负连接会显著影响网络的过渡行为,加剧放电概率的振荡,从而导致不均匀放电和癫痫状态。在一定范围内,负输入对网络动态状态的影响与负连接类似,会增强网络振荡,导致更高的脆弱性。然而,较大的负输入会导致放电概率的振荡消失,表明脆性维持在较低水平。我们推测,负调控可能是癫痫发作不可或缺的因素,未来的研究应对此予以充分考虑。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The Effects of Negative Regulation on the Dynamical Transition in Epileptic Network

The transiting mechanism of abnormal brain functional activities, such as the epileptic seizures, has not been fully elucidated. In this study, we employ a probabilistic neural network model to investigate the impact of negative regulation, including negative connections and negative inputs, on the dynamical transition behavior of network dynamics. It is observed that negative connections significantly influence the transition behavior of the network, intensifying the oscillation of discharge probability, corresponding to uneven discharge and epileptic states. Negative inputs, within a certain range, exhibited a similar impact on the dynamic state of the network as negative connections, enhancing network oscillations and resulting in higher fragility. However, larger negative inputs can led to the disappearance of oscillations in the discharge probability, indicating a maintenance of lower fragility. We speculate that negative regulation may be an indispensable factor in the occurrence of epileptic seizures, and future research should give it due consideration.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Bifurcation and Chaos
International Journal of Bifurcation and Chaos 数学-数学跨学科应用
CiteScore
4.10
自引率
13.60%
发文量
237
审稿时长
2-4 weeks
期刊介绍: The International Journal of Bifurcation and Chaos is widely regarded as a leading journal in the exciting fields of chaos theory and nonlinear science. Represented by an international editorial board comprising top researchers from a wide variety of disciplines, it is setting high standards in scientific and production quality. The journal has been reputedly acclaimed by the scientific community around the world, and has featured many important papers by leading researchers from various areas of applied sciences and engineering. The discipline of chaos theory has created a universal paradigm, a scientific parlance, and a mathematical tool for grappling with complex dynamical phenomena. In every field of applied sciences (astronomy, atmospheric sciences, biology, chemistry, economics, geophysics, life and medical sciences, physics, social sciences, ecology, etc.) and engineering (aerospace, chemical, electronic, civil, computer, information, mechanical, software, telecommunication, etc.), the local and global manifestations of chaos and bifurcation have burst forth in an unprecedented universality, linking scientists heretofore unfamiliar with one another''s fields, and offering an opportunity to reshape our grasp of reality.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信