利用神经网络快速估计广义极值分布的参数

IF 1.5 3区 环境科学与生态学 Q4 ENVIRONMENTAL SCIENCES
Environmetrics Pub Date : 2024-03-12 DOI:10.1002/env.2845
Sweta Rai, Alexis Hoffman, Soumendra Lahiri, Douglas W. Nychka, Stephan R. Sain, Soutir Bandyopadhyay
{"title":"利用神经网络快速估计广义极值分布的参数","authors":"Sweta Rai,&nbsp;Alexis Hoffman,&nbsp;Soumendra Lahiri,&nbsp;Douglas W. Nychka,&nbsp;Stephan R. Sain,&nbsp;Soutir Bandyopadhyay","doi":"10.1002/env.2845","DOIUrl":null,"url":null,"abstract":"<p>The heavy-tailed behavior of the generalized extreme-value distribution makes it a popular choice for modeling extreme events such as floods, droughts, heatwaves, wildfires and so forth. However, estimating the distribution's parameters using conventional maximum likelihood methods can be computationally intensive, even for moderate-sized datasets. To overcome this limitation, we propose a computationally efficient, likelihood-free estimation method utilizing a neural network. Through an extensive simulation study, we demonstrate that the proposed neural network-based method provides generalized extreme value distribution parameter estimates with comparable accuracy to the conventional maximum likelihood method but with a significant computational speedup. To account for estimation uncertainty, we utilize parametric bootstrapping, which is inherent in the trained network. Finally, we apply this method to 1000-year annual maximum temperature data from the Community Climate System Model version 3 across North America for three atmospheric concentrations: 289 ppm <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mrow>\n <mtext>CO</mtext>\n </mrow>\n <mrow>\n <mn>2</mn>\n </mrow>\n </msub>\n </mrow>\n <annotation>$$ {\\mathrm{CO}}_2 $$</annotation>\n </semantics></math> (pre-industrial), 700 ppm <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mrow>\n <mtext>CO</mtext>\n </mrow>\n <mrow>\n <mn>2</mn>\n </mrow>\n </msub>\n </mrow>\n <annotation>$$ {\\mathrm{CO}}_2 $$</annotation>\n </semantics></math> (future conditions), and 1400 ppm <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mrow>\n <mtext>CO</mtext>\n </mrow>\n <mrow>\n <mn>2</mn>\n </mrow>\n </msub>\n </mrow>\n <annotation>$$ {\\mathrm{CO}}_2 $$</annotation>\n </semantics></math>, and compare the results with those obtained using the maximum likelihood approach.</p>","PeriodicalId":50512,"journal":{"name":"Environmetrics","volume":"35 3","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2024-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fast parameter estimation of generalized extreme value distribution using neural networks\",\"authors\":\"Sweta Rai,&nbsp;Alexis Hoffman,&nbsp;Soumendra Lahiri,&nbsp;Douglas W. Nychka,&nbsp;Stephan R. Sain,&nbsp;Soutir Bandyopadhyay\",\"doi\":\"10.1002/env.2845\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The heavy-tailed behavior of the generalized extreme-value distribution makes it a popular choice for modeling extreme events such as floods, droughts, heatwaves, wildfires and so forth. However, estimating the distribution's parameters using conventional maximum likelihood methods can be computationally intensive, even for moderate-sized datasets. To overcome this limitation, we propose a computationally efficient, likelihood-free estimation method utilizing a neural network. Through an extensive simulation study, we demonstrate that the proposed neural network-based method provides generalized extreme value distribution parameter estimates with comparable accuracy to the conventional maximum likelihood method but with a significant computational speedup. To account for estimation uncertainty, we utilize parametric bootstrapping, which is inherent in the trained network. Finally, we apply this method to 1000-year annual maximum temperature data from the Community Climate System Model version 3 across North America for three atmospheric concentrations: 289 ppm <span></span><math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mrow>\\n <mtext>CO</mtext>\\n </mrow>\\n <mrow>\\n <mn>2</mn>\\n </mrow>\\n </msub>\\n </mrow>\\n <annotation>$$ {\\\\mathrm{CO}}_2 $$</annotation>\\n </semantics></math> (pre-industrial), 700 ppm <span></span><math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mrow>\\n <mtext>CO</mtext>\\n </mrow>\\n <mrow>\\n <mn>2</mn>\\n </mrow>\\n </msub>\\n </mrow>\\n <annotation>$$ {\\\\mathrm{CO}}_2 $$</annotation>\\n </semantics></math> (future conditions), and 1400 ppm <span></span><math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mrow>\\n <mtext>CO</mtext>\\n </mrow>\\n <mrow>\\n <mn>2</mn>\\n </mrow>\\n </msub>\\n </mrow>\\n <annotation>$$ {\\\\mathrm{CO}}_2 $$</annotation>\\n </semantics></math>, and compare the results with those obtained using the maximum likelihood approach.</p>\",\"PeriodicalId\":50512,\"journal\":{\"name\":\"Environmetrics\",\"volume\":\"35 3\",\"pages\":\"\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2024-03-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Environmetrics\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/env.2845\",\"RegionNum\":3,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmetrics","FirstCategoryId":"93","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/env.2845","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

广义极值分布的重尾行为使其成为洪水、干旱、热浪、野火等极端事件建模的热门选择。然而,使用传统的最大似然法估计该分布的参数需要大量的计算,即使对于中等规模的数据集也是如此。为了克服这一限制,我们提出了一种利用神经网络的计算高效、无似然法的估计方法。通过广泛的模拟研究,我们证明了所提出的基于神经网络的方法可以提供广义极值分布参数估计,其准确性与传统的最大似然法相当,但计算速度明显加快。为了考虑估计的不确定性,我们利用了参数自举法,这是训练有素的网络所固有的。最后,我们将这一方法应用于共同体气候系统模式第 3 版提供的北美地区三种大气浓度下的 1000 年年度最高气温数据:289 ppm(工业化前)、700 ppm(未来条件)和 1400 ppm,并将结果与使用最大似然法得出的结果进行比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Fast parameter estimation of generalized extreme value distribution using neural networks

The heavy-tailed behavior of the generalized extreme-value distribution makes it a popular choice for modeling extreme events such as floods, droughts, heatwaves, wildfires and so forth. However, estimating the distribution's parameters using conventional maximum likelihood methods can be computationally intensive, even for moderate-sized datasets. To overcome this limitation, we propose a computationally efficient, likelihood-free estimation method utilizing a neural network. Through an extensive simulation study, we demonstrate that the proposed neural network-based method provides generalized extreme value distribution parameter estimates with comparable accuracy to the conventional maximum likelihood method but with a significant computational speedup. To account for estimation uncertainty, we utilize parametric bootstrapping, which is inherent in the trained network. Finally, we apply this method to 1000-year annual maximum temperature data from the Community Climate System Model version 3 across North America for three atmospheric concentrations: 289 ppm CO 2 $$ {\mathrm{CO}}_2 $$ (pre-industrial), 700 ppm CO 2 $$ {\mathrm{CO}}_2 $$ (future conditions), and 1400 ppm CO 2 $$ {\mathrm{CO}}_2 $$ , and compare the results with those obtained using the maximum likelihood approach.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Environmetrics
Environmetrics 环境科学-环境科学
CiteScore
2.90
自引率
17.60%
发文量
67
审稿时长
18-36 weeks
期刊介绍: Environmetrics, the official journal of The International Environmetrics Society (TIES), an Association of the International Statistical Institute, is devoted to the dissemination of high-quality quantitative research in the environmental sciences. The journal welcomes pertinent and innovative submissions from quantitative disciplines developing new statistical and mathematical techniques, methods, and theories that solve modern environmental problems. Articles must proffer substantive, new statistical or mathematical advances to answer important scientific questions in the environmental sciences, or must develop novel or enhanced statistical methodology with clear applications to environmental science. New methods should be illustrated with recent environmental data.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信