与特殊正交多项式相关的狄拉克-洛伦兹标量势的一个连续参数族

IF 1.4 4区 物理与天体物理 Q3 PHYSICS, NUCLEAR
Suman Banerjee, Rajesh Kumar Yadav
{"title":"与特殊正交多项式相关的狄拉克-洛伦兹标量势的一个连续参数族","authors":"Suman Banerjee, Rajesh Kumar Yadav","doi":"10.1142/s0217751x23501841","DOIUrl":null,"url":null,"abstract":"<p>We extend our recent works [<i>Int. J. Mod. Phys.</i> A <b>38</b>, 2350069 (2023)] and obtain one-parameter <span><math altimg=\"eq-00001.gif\" display=\"inline\" overflow=\"scroll\"><mo stretchy=\"false\">(</mo><mi>λ</mi><mo stretchy=\"false\">)</mo></math></span><span></span> family of rationally extended Dirac–Lorentz scalar potentials with their explicit solutions in terms of <span><math altimg=\"eq-00002.gif\" display=\"inline\" overflow=\"scroll\"><msub><mrow><mi>X</mi></mrow><mrow><mi>m</mi></mrow></msub></math></span><span></span> exceptional orthogonal polynomials. We further show that as the parameter <span><math altimg=\"eq-00003.gif\" display=\"inline\" overflow=\"scroll\"><mi>λ</mi><mo>→</mo><mn>0</mn></math></span><span></span> or <span><math altimg=\"eq-00004.gif\" display=\"inline\" overflow=\"scroll\"><mo>−</mo><mn>1</mn></math></span><span></span>, we get the corresponding rationally extended Pursey and the rationally extended Abraham–Moses-type of scalar potentials, respectively, which have one bound state less than the starting scalar potentials.</p>","PeriodicalId":50309,"journal":{"name":"International Journal of Modern Physics a","volume":"55 1","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2024-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"One continuous parameter family of Dirac–Lorentz scalar potentials associated with exceptional orthogonal polynomials\",\"authors\":\"Suman Banerjee, Rajesh Kumar Yadav\",\"doi\":\"10.1142/s0217751x23501841\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We extend our recent works [<i>Int. J. Mod. Phys.</i> A <b>38</b>, 2350069 (2023)] and obtain one-parameter <span><math altimg=\\\"eq-00001.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mo stretchy=\\\"false\\\">(</mo><mi>λ</mi><mo stretchy=\\\"false\\\">)</mo></math></span><span></span> family of rationally extended Dirac–Lorentz scalar potentials with their explicit solutions in terms of <span><math altimg=\\\"eq-00002.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><msub><mrow><mi>X</mi></mrow><mrow><mi>m</mi></mrow></msub></math></span><span></span> exceptional orthogonal polynomials. We further show that as the parameter <span><math altimg=\\\"eq-00003.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mi>λ</mi><mo>→</mo><mn>0</mn></math></span><span></span> or <span><math altimg=\\\"eq-00004.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mo>−</mo><mn>1</mn></math></span><span></span>, we get the corresponding rationally extended Pursey and the rationally extended Abraham–Moses-type of scalar potentials, respectively, which have one bound state less than the starting scalar potentials.</p>\",\"PeriodicalId\":50309,\"journal\":{\"name\":\"International Journal of Modern Physics a\",\"volume\":\"55 1\",\"pages\":\"\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2024-02-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Modern Physics a\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1142/s0217751x23501841\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PHYSICS, NUCLEAR\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Modern Physics a","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1142/s0217751x23501841","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, NUCLEAR","Score":null,"Total":0}
引用次数: 0

摘要

我们扩展了最近的工作[Int. J. Mod. Phys. A 38, 2350069 (2023)],得到了合理扩展的狄拉克-洛伦兹标量势的一参数(λ)族,它们的显式解是 Xm 例外正交多项式。我们进一步证明,当参数λ→0或-1时,我们分别得到相应的合理扩展的帕西(Pursey)和合理扩展的亚伯拉罕-摩西(Abraham-Moses)型标量势,它们比起始标量势少一个束缚态。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
One continuous parameter family of Dirac–Lorentz scalar potentials associated with exceptional orthogonal polynomials

We extend our recent works [Int. J. Mod. Phys. A 38, 2350069 (2023)] and obtain one-parameter (λ) family of rationally extended Dirac–Lorentz scalar potentials with their explicit solutions in terms of Xm exceptional orthogonal polynomials. We further show that as the parameter λ0 or 1, we get the corresponding rationally extended Pursey and the rationally extended Abraham–Moses-type of scalar potentials, respectively, which have one bound state less than the starting scalar potentials.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Modern Physics a
International Journal of Modern Physics a 物理-物理:核物理
CiteScore
3.00
自引率
12.50%
发文量
283
审稿时长
3 months
期刊介绍: Started in 1986, IJMPA has gained international repute as a high-quality scientific journal. It consists of important review articles and original papers covering the latest research developments in Particles and Fields, and selected topics intersecting with Gravitation and Cosmology. The journal also features articles of long-standing value and importance which can be vital to research into new unexplored areas.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信