{"title":"无人潜航器柔性支撑轴系统的多体动力学研究与优化","authors":"Yuchen An, Chaofan Liu, Jing Liu, Guang Pan","doi":"10.1177/14644193241238082","DOIUrl":null,"url":null,"abstract":"This paper presented a multibody dynamic model for the shaft system in an unmanned underwater vehicle (UUV), the model considers the flexible coupling, ball bearing and flexible support. The stiffness characteristics of flexible coupling are calculated by using the finite-element analysis. The effects of load condition, bearing location and support stiffness on shaft vibrations are investigated. Then, an optimization for the bearing locations and support stiffness is conducted. This study provides some guidance for the design and vibration optimization of the shaft system in UUVs.","PeriodicalId":54565,"journal":{"name":"Proceedings of the Institution of Mechanical Engineers Part K-Journal of Multi-Body Dynamics","volume":"8 1","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2024-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multibody dynamic study and optimization for a flexible support shaft system in unmanned underwater vehicle\",\"authors\":\"Yuchen An, Chaofan Liu, Jing Liu, Guang Pan\",\"doi\":\"10.1177/14644193241238082\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presented a multibody dynamic model for the shaft system in an unmanned underwater vehicle (UUV), the model considers the flexible coupling, ball bearing and flexible support. The stiffness characteristics of flexible coupling are calculated by using the finite-element analysis. The effects of load condition, bearing location and support stiffness on shaft vibrations are investigated. Then, an optimization for the bearing locations and support stiffness is conducted. This study provides some guidance for the design and vibration optimization of the shaft system in UUVs.\",\"PeriodicalId\":54565,\"journal\":{\"name\":\"Proceedings of the Institution of Mechanical Engineers Part K-Journal of Multi-Body Dynamics\",\"volume\":\"8 1\",\"pages\":\"\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2024-03-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Institution of Mechanical Engineers Part K-Journal of Multi-Body Dynamics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1177/14644193241238082\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Institution of Mechanical Engineers Part K-Journal of Multi-Body Dynamics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1177/14644193241238082","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
Multibody dynamic study and optimization for a flexible support shaft system in unmanned underwater vehicle
This paper presented a multibody dynamic model for the shaft system in an unmanned underwater vehicle (UUV), the model considers the flexible coupling, ball bearing and flexible support. The stiffness characteristics of flexible coupling are calculated by using the finite-element analysis. The effects of load condition, bearing location and support stiffness on shaft vibrations are investigated. Then, an optimization for the bearing locations and support stiffness is conducted. This study provides some guidance for the design and vibration optimization of the shaft system in UUVs.
期刊介绍:
The Journal of Multi-body Dynamics is a multi-disciplinary forum covering all aspects of mechanical design and dynamic analysis of multi-body systems. It is essential reading for academic and industrial research and development departments active in the mechanical design, monitoring and dynamic analysis of multi-body systems.