吸引-推进趋化系统:非线性扩散和生产的作用

IF 1.2 4区 数学 Q2 MATHEMATICS, APPLIED
Zhan Jiao, Irena Jadlovská, Tongxing Li
{"title":"吸引-推进趋化系统:非线性扩散和生产的作用","authors":"Zhan Jiao,&nbsp;Irena Jadlovská,&nbsp;Tongxing Li","doi":"10.1007/s10440-024-00641-6","DOIUrl":null,"url":null,"abstract":"<div><p>This article considers the no-flux attraction-repulsion chemotaxis model </p><div><div><span>$$ \\left \\{ \\textstyle\\begin{array}{l} \\begin{aligned} &amp;u_{t} = \\nabla \\cdot \\big((u+1)^{m_{1}-1}\\nabla u-\\chi u(u+1)^{m_{2}-2} \\nabla v+\\xi u(u+1)^{m_{3}-2}\\nabla w\\big),&amp; x\\in \\Omega ,\\ t&gt;0&amp;, \\\\ &amp; 0=\\Delta v+f(u)-\\beta v, &amp; x\\in \\Omega ,\\ t&gt;0&amp;, \\\\ &amp; 0=\\Delta w+g(u)-\\delta w, &amp; x\\in \\Omega ,\\ t&gt;0&amp; \\end{aligned} \\end{array}\\displaystyle \\right . $$</span></div></div><p> defined in a smooth and bounded domain <span>\\(\\Omega \\subset \\mathbb{R}^{n}\\)</span> (<span>\\(n\\ge 2\\)</span>) with <span>\\(m_{1},m_{2},m_{3}\\in \\mathbb{R}\\)</span>, <span>\\(\\chi ,\\xi ,\\beta ,\\delta &gt;0\\)</span>. The functions <span>\\(f(u)\\)</span>, <span>\\(g(u)\\)</span> extend the prototypes <span>\\(f(u)=\\alpha u^{s}\\)</span> and <span>\\(g(u)=\\gamma u^{r}\\)</span> with <span>\\(\\alpha ,\\gamma &gt;0\\)</span> and suitable <span>\\(s,r&gt;0\\)</span> for all <span>\\(u\\ge 0\\)</span>. Our main result exhibits that there exists <span>\\(M^{*}&gt;0\\)</span> such that for all properly regular initial data, the studied model admits a unique classical solution which remains bounded if <span>\\(m_{2}+s&lt; m_{3}+r\\)</span> or <span>\\(m_{2}+s=m_{3}+r\\)</span> and <span>\\(\\frac{\\xi \\gamma }{\\chi \\alpha }&gt;M^{*}\\)</span>.</p></div>","PeriodicalId":53132,"journal":{"name":"Acta Applicandae Mathematicae","volume":"190 1","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2024-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An Attraction-Repulsion Chemotaxis System: The Roles of Nonlinear Diffusion and Productions\",\"authors\":\"Zhan Jiao,&nbsp;Irena Jadlovská,&nbsp;Tongxing Li\",\"doi\":\"10.1007/s10440-024-00641-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This article considers the no-flux attraction-repulsion chemotaxis model </p><div><div><span>$$ \\\\left \\\\{ \\\\textstyle\\\\begin{array}{l} \\\\begin{aligned} &amp;u_{t} = \\\\nabla \\\\cdot \\\\big((u+1)^{m_{1}-1}\\\\nabla u-\\\\chi u(u+1)^{m_{2}-2} \\\\nabla v+\\\\xi u(u+1)^{m_{3}-2}\\\\nabla w\\\\big),&amp; x\\\\in \\\\Omega ,\\\\ t&gt;0&amp;, \\\\\\\\ &amp; 0=\\\\Delta v+f(u)-\\\\beta v, &amp; x\\\\in \\\\Omega ,\\\\ t&gt;0&amp;, \\\\\\\\ &amp; 0=\\\\Delta w+g(u)-\\\\delta w, &amp; x\\\\in \\\\Omega ,\\\\ t&gt;0&amp; \\\\end{aligned} \\\\end{array}\\\\displaystyle \\\\right . $$</span></div></div><p> defined in a smooth and bounded domain <span>\\\\(\\\\Omega \\\\subset \\\\mathbb{R}^{n}\\\\)</span> (<span>\\\\(n\\\\ge 2\\\\)</span>) with <span>\\\\(m_{1},m_{2},m_{3}\\\\in \\\\mathbb{R}\\\\)</span>, <span>\\\\(\\\\chi ,\\\\xi ,\\\\beta ,\\\\delta &gt;0\\\\)</span>. The functions <span>\\\\(f(u)\\\\)</span>, <span>\\\\(g(u)\\\\)</span> extend the prototypes <span>\\\\(f(u)=\\\\alpha u^{s}\\\\)</span> and <span>\\\\(g(u)=\\\\gamma u^{r}\\\\)</span> with <span>\\\\(\\\\alpha ,\\\\gamma &gt;0\\\\)</span> and suitable <span>\\\\(s,r&gt;0\\\\)</span> for all <span>\\\\(u\\\\ge 0\\\\)</span>. Our main result exhibits that there exists <span>\\\\(M^{*}&gt;0\\\\)</span> such that for all properly regular initial data, the studied model admits a unique classical solution which remains bounded if <span>\\\\(m_{2}+s&lt; m_{3}+r\\\\)</span> or <span>\\\\(m_{2}+s=m_{3}+r\\\\)</span> and <span>\\\\(\\\\frac{\\\\xi \\\\gamma }{\\\\chi \\\\alpha }&gt;M^{*}\\\\)</span>.</p></div>\",\"PeriodicalId\":53132,\"journal\":{\"name\":\"Acta Applicandae Mathematicae\",\"volume\":\"190 1\",\"pages\":\"\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2024-03-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta Applicandae Mathematicae\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10440-024-00641-6\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Applicandae Mathematicae","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10440-024-00641-6","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

本文考虑了无流动吸引-排斥趋化模型 $$ \left \{ \textstyle\begin{array}{l}\u_{t} = \nabla \cdot \big((u+1)^{m_{1}-1}\nabla u-\chi u(u+1)^{m_{2}-2} \nabla v+\xi u(u+1)^{m_{3}-2}\nabla w\big),& x\in \Omega ,\ t>;0&,\ & 0=\Delta v+f(u)-\beta v, & x\in\Omega ,\ t>0&,\ & 0=\Delta w+g(u)-\delta w, & x\in\Omega ,\ t>0& \end{aligned}\$$ defined in a smooth and bounded domain \(\Omega \subset \mathbb{R}^{n}\) (\(n\ge 2\)) with \(m_{1},m_{2},m_{3}\in \mathbb{R}\), \(\chi ,\xi ,\beta ,\delta >0\).函数(f(u))、(g(u))扩展了原型(f(u)=α u^{s}\) 和(g(u)=\gamma u^{r}\) with \(\alpha ,\gamma >0\) and suitable \(s,r>0\) for all \(u\ge 0\).我们的主要结果表明,存在这样一个 \(M^{*}>0\) ,即对于所有适当规则的初始数据,所研究的模型都有一个唯一的经典解,如果 \(m_{2}+s< m_{3}+r\) 或 \(m_{2}+s=m_{3}+r\) 和 \(\frac{xi \gamma }{chi \alpha }>M^{*}\) ,这个解仍然是有界的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An Attraction-Repulsion Chemotaxis System: The Roles of Nonlinear Diffusion and Productions

This article considers the no-flux attraction-repulsion chemotaxis model

$$ \left \{ \textstyle\begin{array}{l} \begin{aligned} &u_{t} = \nabla \cdot \big((u+1)^{m_{1}-1}\nabla u-\chi u(u+1)^{m_{2}-2} \nabla v+\xi u(u+1)^{m_{3}-2}\nabla w\big),& x\in \Omega ,\ t>0&, \\ & 0=\Delta v+f(u)-\beta v, & x\in \Omega ,\ t>0&, \\ & 0=\Delta w+g(u)-\delta w, & x\in \Omega ,\ t>0& \end{aligned} \end{array}\displaystyle \right . $$

defined in a smooth and bounded domain \(\Omega \subset \mathbb{R}^{n}\) (\(n\ge 2\)) with \(m_{1},m_{2},m_{3}\in \mathbb{R}\), \(\chi ,\xi ,\beta ,\delta >0\). The functions \(f(u)\), \(g(u)\) extend the prototypes \(f(u)=\alpha u^{s}\) and \(g(u)=\gamma u^{r}\) with \(\alpha ,\gamma >0\) and suitable \(s,r>0\) for all \(u\ge 0\). Our main result exhibits that there exists \(M^{*}>0\) such that for all properly regular initial data, the studied model admits a unique classical solution which remains bounded if \(m_{2}+s< m_{3}+r\) or \(m_{2}+s=m_{3}+r\) and \(\frac{\xi \gamma }{\chi \alpha }>M^{*}\).

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Acta Applicandae Mathematicae
Acta Applicandae Mathematicae 数学-应用数学
CiteScore
2.80
自引率
6.20%
发文量
77
审稿时长
16.2 months
期刊介绍: Acta Applicandae Mathematicae is devoted to the art and techniques of applying mathematics and the development of new, applicable mathematical methods. Covering a large spectrum from modeling to qualitative analysis and computational methods, Acta Applicandae Mathematicae contains papers on different aspects of the relationship between theory and applications, ranging from descriptive papers on actual applications meeting contemporary mathematical standards to proofs of new and deep theorems in applied mathematics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信