复活和部分 Theta 系列

IF 0.6 4区 数学 Q3 MATHEMATICS
Li Han, Yong Li, David Sauzin, Shanzhong Sun
{"title":"复活和部分 Theta 系列","authors":"Li Han,&nbsp;Yong Li,&nbsp;David Sauzin,&nbsp;Shanzhong Sun","doi":"10.1134/S001626632303005X","DOIUrl":null,"url":null,"abstract":"<p> We consider partial theta series associated with periodic sequences of coefficients, namely, <span>\\(\\Theta(\\tau):= \\sum_{n&gt;0} n^\\nu f(n) e^{i\\pi n^2\\tau/M}\\)</span>, where <span>\\(\\nu\\in\\mathbb{Z}_{\\ge0}\\)</span> and </p><p> <span>\\(f\\colon\\mathbb{Z} \\to \\mathbb{C}\\)</span> is an <span>\\(M\\)</span>-periodic function. Such a function <span>\\(\\Theta\\)</span> is analytic in the half-plane <span>\\(\\{ \\operatorname {Im}\\tau&gt;0\\}\\)</span> and in the asymptotics of <span>\\(\\Theta(\\tau)\\)</span> as <span>\\(\\tau\\)</span> tends nontangentially to any <span>\\(\\alpha\\in\\mathbb{Q}\\)</span> a formal power series appears, which depends on the parity of <span>\\(\\nu\\)</span> and <span>\\(f\\)</span>. We discuss the summability and resurgence properties of these series; namely, we present explicit formulas for their formal Borel transforms and their consequences for the modularity properties of <span>\\(\\Theta\\)</span>, or its “quantum modularity” properties in the sense of Zagier’s recent theory. The discrete Fourier transform of <span>\\(f\\)</span> plays an unexpected role and leads to a number-theoretic analogue of Écalle’s “bridge equations.” The main thesis is: (quantum) modularity <span>\\(=\\)</span> Stokes phenomenon <span>\\(+\\)</span> discrete Fourier transform. </p>","PeriodicalId":575,"journal":{"name":"Functional Analysis and Its Applications","volume":null,"pages":null},"PeriodicalIF":0.6000,"publicationDate":"2024-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Resurgence and Partial Theta Series\",\"authors\":\"Li Han,&nbsp;Yong Li,&nbsp;David Sauzin,&nbsp;Shanzhong Sun\",\"doi\":\"10.1134/S001626632303005X\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p> We consider partial theta series associated with periodic sequences of coefficients, namely, <span>\\\\(\\\\Theta(\\\\tau):= \\\\sum_{n&gt;0} n^\\\\nu f(n) e^{i\\\\pi n^2\\\\tau/M}\\\\)</span>, where <span>\\\\(\\\\nu\\\\in\\\\mathbb{Z}_{\\\\ge0}\\\\)</span> and </p><p> <span>\\\\(f\\\\colon\\\\mathbb{Z} \\\\to \\\\mathbb{C}\\\\)</span> is an <span>\\\\(M\\\\)</span>-periodic function. Such a function <span>\\\\(\\\\Theta\\\\)</span> is analytic in the half-plane <span>\\\\(\\\\{ \\\\operatorname {Im}\\\\tau&gt;0\\\\}\\\\)</span> and in the asymptotics of <span>\\\\(\\\\Theta(\\\\tau)\\\\)</span> as <span>\\\\(\\\\tau\\\\)</span> tends nontangentially to any <span>\\\\(\\\\alpha\\\\in\\\\mathbb{Q}\\\\)</span> a formal power series appears, which depends on the parity of <span>\\\\(\\\\nu\\\\)</span> and <span>\\\\(f\\\\)</span>. We discuss the summability and resurgence properties of these series; namely, we present explicit formulas for their formal Borel transforms and their consequences for the modularity properties of <span>\\\\(\\\\Theta\\\\)</span>, or its “quantum modularity” properties in the sense of Zagier’s recent theory. The discrete Fourier transform of <span>\\\\(f\\\\)</span> plays an unexpected role and leads to a number-theoretic analogue of Écalle’s “bridge equations.” The main thesis is: (quantum) modularity <span>\\\\(=\\\\)</span> Stokes phenomenon <span>\\\\(+\\\\)</span> discrete Fourier transform. </p>\",\"PeriodicalId\":575,\"journal\":{\"name\":\"Functional Analysis and Its Applications\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2024-03-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Functional Analysis and Its Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1134/S001626632303005X\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Functional Analysis and Its Applications","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1134/S001626632303005X","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

Abstract We consider partial theta series associated with periodic sequences of coefficients, namely, ( \Theta(\tau):= sum_{n>0} n^\nu f(n) e^{i\pi n^2\tau/M}\), 其中(\nu\in\mathbb{Z}_{\ge0}\) 和(f\colon\mathbb{Z} \to\mathbb{C}\) 是一个(M\)周期函数。这样的函数 (theta)在半平面 ({ Im}\tau>;在 \(\Theta(\tau)\) 的渐近线上,当 \(\tau\) 非直角地趋向于任意 \(\alpha\in\mathbb{Q}\) 时,会出现一个形式上的幂级数,它取决于 \(\nu\) 和 \(f\) 的奇偶性。)我们讨论了这些数列的可求和性和回升性;也就是说,我们给出了它们的形式博雷尔变换的明确公式,以及它们对 \(\Theta\) 的模块性特性,或者说扎吉尔(Zagier)最近理论意义上的 "量子模块性 "特性的影响。离散傅里叶变换发挥了意想不到的作用,并引出了埃卡勒 "桥方程 "的数论类比。主要论点是:(量子)模块性 \(=\) 斯托克斯现象 \(+\) 离散傅立叶变换。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Resurgence and Partial Theta Series

Resurgence and Partial Theta Series

We consider partial theta series associated with periodic sequences of coefficients, namely, \(\Theta(\tau):= \sum_{n>0} n^\nu f(n) e^{i\pi n^2\tau/M}\), where \(\nu\in\mathbb{Z}_{\ge0}\) and

\(f\colon\mathbb{Z} \to \mathbb{C}\) is an \(M\)-periodic function. Such a function \(\Theta\) is analytic in the half-plane \(\{ \operatorname {Im}\tau>0\}\) and in the asymptotics of \(\Theta(\tau)\) as \(\tau\) tends nontangentially to any \(\alpha\in\mathbb{Q}\) a formal power series appears, which depends on the parity of \(\nu\) and \(f\). We discuss the summability and resurgence properties of these series; namely, we present explicit formulas for their formal Borel transforms and their consequences for the modularity properties of \(\Theta\), or its “quantum modularity” properties in the sense of Zagier’s recent theory. The discrete Fourier transform of \(f\) plays an unexpected role and leads to a number-theoretic analogue of Écalle’s “bridge equations.” The main thesis is: (quantum) modularity \(=\) Stokes phenomenon \(+\) discrete Fourier transform.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.90
自引率
0.00%
发文量
7
审稿时长
>12 weeks
期刊介绍: Functional Analysis and Its Applications publishes current problems of functional analysis, including representation theory, theory of abstract and functional spaces, theory of operators, spectral theory, theory of operator equations, and the theory of normed rings. The journal also covers the most important applications of functional analysis in mathematics, mechanics, and theoretical physics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信