论守恒定律系统的欧拉后向逼近

Maria Teresa Chiri, Minyan Zhang
{"title":"论守恒定律系统的欧拉后向逼近","authors":"Maria Teresa Chiri, Minyan Zhang","doi":"10.1007/s00030-023-00920-5","DOIUrl":null,"url":null,"abstract":"<p>We study approximate solutions to a hyperbolic system of conservation laws, constructed by a backward Euler scheme, where time is discretized while space is still described by a continuous variable <span>\\(x\\in {\\mathbb R}\\)</span>. We prove the global existence and uniqueness of these approximate solutions, and the invariance of suitable subdomains. Furthermore, given a left and a right state <span>\\(u_l, u_r\\)</span> connected by an entropy-admissible shock, we construct a traveling wave profile for the backward Euler scheme connecting these two asymptotic states in two main cases. Namely: (1) a scalar conservation law, where the jump <span>\\(u_l-u_r\\)</span> can be arbitrarily large, and (2) a strictly hyperbolic system, assuming that the jump <span>\\(u_l-u_r\\)</span> occurs in a genuinely nonlinear family and is sufficiently small.</p>","PeriodicalId":501665,"journal":{"name":"Nonlinear Differential Equations and Applications (NoDEA)","volume":"11 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On backward Euler approximations for systems of conservation laws\",\"authors\":\"Maria Teresa Chiri, Minyan Zhang\",\"doi\":\"10.1007/s00030-023-00920-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We study approximate solutions to a hyperbolic system of conservation laws, constructed by a backward Euler scheme, where time is discretized while space is still described by a continuous variable <span>\\\\(x\\\\in {\\\\mathbb R}\\\\)</span>. We prove the global existence and uniqueness of these approximate solutions, and the invariance of suitable subdomains. Furthermore, given a left and a right state <span>\\\\(u_l, u_r\\\\)</span> connected by an entropy-admissible shock, we construct a traveling wave profile for the backward Euler scheme connecting these two asymptotic states in two main cases. Namely: (1) a scalar conservation law, where the jump <span>\\\\(u_l-u_r\\\\)</span> can be arbitrarily large, and (2) a strictly hyperbolic system, assuming that the jump <span>\\\\(u_l-u_r\\\\)</span> occurs in a genuinely nonlinear family and is sufficiently small.</p>\",\"PeriodicalId\":501665,\"journal\":{\"name\":\"Nonlinear Differential Equations and Applications (NoDEA)\",\"volume\":\"11 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-03-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nonlinear Differential Equations and Applications (NoDEA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s00030-023-00920-5\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nonlinear Differential Equations and Applications (NoDEA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s00030-023-00920-5","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们研究双曲守恒律系统的近似解,该系统由后退欧拉方案构造,其中时间被离散化,而空间仍由连续变量 \(x\in {\mathbb R}\) 描述。我们证明了这些近似解的全局存在性和唯一性,以及合适子域的不变性。此外,给定一个左状态和一个右状态(u_l, u_r\ ),通过一个熵容许冲击连接起来,我们在两种主要情况下为连接这两个渐近状态的后向欧拉方案构建了一个行波剖面。即:(1) 标量守恒定律,其中跃迁 \(u_l-u_r\)可以任意大;(2) 严格双曲系统,假设跃迁 \(u_l-u_r\)出现在一个真正的非线性族中,并且足够小。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

On backward Euler approximations for systems of conservation laws

On backward Euler approximations for systems of conservation laws

We study approximate solutions to a hyperbolic system of conservation laws, constructed by a backward Euler scheme, where time is discretized while space is still described by a continuous variable \(x\in {\mathbb R}\). We prove the global existence and uniqueness of these approximate solutions, and the invariance of suitable subdomains. Furthermore, given a left and a right state \(u_l, u_r\) connected by an entropy-admissible shock, we construct a traveling wave profile for the backward Euler scheme connecting these two asymptotic states in two main cases. Namely: (1) a scalar conservation law, where the jump \(u_l-u_r\) can be arbitrarily large, and (2) a strictly hyperbolic system, assuming that the jump \(u_l-u_r\) occurs in a genuinely nonlinear family and is sufficiently small.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信