用于构建高效除汞催化剂的介孔铜锰氧化物尖晶石的纳米细化效应

IF 3.4 3区 化学 Q2 CHEMISTRY, PHYSICAL
Yu Wang , Bin Zhou , Jingjie Guo , Tao Liu , Yu Yang , Bing Li , Jiaojiao Yang , Yue Peng , Jianjun Chen , Wenzhe Si , Junhua Li
{"title":"用于构建高效除汞催化剂的介孔铜锰氧化物尖晶石的纳米细化效应","authors":"Yu Wang ,&nbsp;Bin Zhou ,&nbsp;Jingjie Guo ,&nbsp;Tao Liu ,&nbsp;Yu Yang ,&nbsp;Bing Li ,&nbsp;Jiaojiao Yang ,&nbsp;Yue Peng ,&nbsp;Jianjun Chen ,&nbsp;Wenzhe Si ,&nbsp;Junhua Li","doi":"10.1016/j.catcom.2024.106899","DOIUrl":null,"url":null,"abstract":"<div><p>Developing high-performance mercury removal catalysts is essential for addressing atmospheric mercury pollution. Notably, conventional mineral adsorbents are ineffective for high-temperature flue gases (&gt;300 °C). In this study, confinement catalysis was utilized to modify CuMn<sub>2</sub>O<sub>4</sub>. Under the chlorine-free catalytic condition, the temperature window of T<sub>95</sub> was widened by 150 °C (for 50–400 °C) toward high-temperature. Mechanistic studies suggest that nanoconfinement effects significantly improve the catalytic performance. Molecular oxygen adsorption and activation capacity were dramatically enhanced, as demonstrated by NAP-XPS. The plentiful grain boundaries effectively adjust the defect species and electronic structure of the catalysts in favor of Hg<sup>0</sup> catalysis, whereas the porous structure improves the reactant adsorption properties.</p></div>","PeriodicalId":263,"journal":{"name":"Catalysis Communications","volume":"187 ","pages":"Article 106899"},"PeriodicalIF":3.4000,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1566736724000591/pdfft?md5=e3a94f1c7a3a7b115242da8979b65765&pid=1-s2.0-S1566736724000591-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Nanoconfinement effects of mesoporous CuMn2O4 spinel for constructing efficient Hg0 removal catalysts\",\"authors\":\"Yu Wang ,&nbsp;Bin Zhou ,&nbsp;Jingjie Guo ,&nbsp;Tao Liu ,&nbsp;Yu Yang ,&nbsp;Bing Li ,&nbsp;Jiaojiao Yang ,&nbsp;Yue Peng ,&nbsp;Jianjun Chen ,&nbsp;Wenzhe Si ,&nbsp;Junhua Li\",\"doi\":\"10.1016/j.catcom.2024.106899\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Developing high-performance mercury removal catalysts is essential for addressing atmospheric mercury pollution. Notably, conventional mineral adsorbents are ineffective for high-temperature flue gases (&gt;300 °C). In this study, confinement catalysis was utilized to modify CuMn<sub>2</sub>O<sub>4</sub>. Under the chlorine-free catalytic condition, the temperature window of T<sub>95</sub> was widened by 150 °C (for 50–400 °C) toward high-temperature. Mechanistic studies suggest that nanoconfinement effects significantly improve the catalytic performance. Molecular oxygen adsorption and activation capacity were dramatically enhanced, as demonstrated by NAP-XPS. The plentiful grain boundaries effectively adjust the defect species and electronic structure of the catalysts in favor of Hg<sup>0</sup> catalysis, whereas the porous structure improves the reactant adsorption properties.</p></div>\",\"PeriodicalId\":263,\"journal\":{\"name\":\"Catalysis Communications\",\"volume\":\"187 \",\"pages\":\"Article 106899\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2024-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S1566736724000591/pdfft?md5=e3a94f1c7a3a7b115242da8979b65765&pid=1-s2.0-S1566736724000591-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Catalysis Communications\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1566736724000591\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Catalysis Communications","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1566736724000591","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

开发高性能的脱汞催化剂对于解决大气汞污染问题至关重要。值得注意的是,传统的矿物吸附剂对高温烟气(>300 °C)无效。本研究利用封闭催化法对 CuMnO 进行了改性。在无氯催化条件下,T 的温度窗口向高温方向扩大了 150 °C(50-400 °C)。机理研究表明,纳米纤化效应显著提高了催化性能。NAP-XPS 证明,分子氧吸附和活化能力显著提高。丰富的晶界有效地调整了催化剂的缺陷种类和电子结构,有利于汞催化,而多孔结构则改善了反应物的吸附性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Nanoconfinement effects of mesoporous CuMn2O4 spinel for constructing efficient Hg0 removal catalysts

Nanoconfinement effects of mesoporous CuMn2O4 spinel for constructing efficient Hg0 removal catalysts

Developing high-performance mercury removal catalysts is essential for addressing atmospheric mercury pollution. Notably, conventional mineral adsorbents are ineffective for high-temperature flue gases (>300 °C). In this study, confinement catalysis was utilized to modify CuMn2O4. Under the chlorine-free catalytic condition, the temperature window of T95 was widened by 150 °C (for 50–400 °C) toward high-temperature. Mechanistic studies suggest that nanoconfinement effects significantly improve the catalytic performance. Molecular oxygen adsorption and activation capacity were dramatically enhanced, as demonstrated by NAP-XPS. The plentiful grain boundaries effectively adjust the defect species and electronic structure of the catalysts in favor of Hg0 catalysis, whereas the porous structure improves the reactant adsorption properties.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Catalysis Communications
Catalysis Communications 化学-物理化学
CiteScore
6.20
自引率
2.70%
发文量
183
审稿时长
46 days
期刊介绍: Catalysis Communications aims to provide rapid publication of significant, novel, and timely research results homogeneous, heterogeneous, and enzymatic catalysis.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信