Katherine Morrison, Anda Degeratu, Vladimir Itskov, Carina Curto
{"title":"竞争性阈值线性网络中新出现动态的多样性","authors":"Katherine Morrison, Anda Degeratu, Vladimir Itskov, Carina Curto","doi":"10.1137/22m1541666","DOIUrl":null,"url":null,"abstract":"SIAM Journal on Applied Dynamical Systems, Volume 23, Issue 1, Page 855-884, March 2024. <br/> Abstract.Threshold-linear networks consist of simple units interacting in the presence of a threshold nonlinearity. Competitive threshold-linear networks have long been known to exhibit multistability, where the activity of the network settles into one of potentially many steady states. In this work, we find conditions that guarantee the absence of steady states, while maintaining bounded activity. These conditions lead us to define a combinatorial family of competitive threshold-linear networks, parametrized by a simple directed graph. By exploring this family, we discover that threshold-linear networks are capable of displaying a surprisingly rich variety of nonlinear dynamics, including limit cycles, quasi-periodic attractors, and chaos. In particular, several types of nonlinear behaviors can co-exist in the same network. Our mathematical results also enable us to engineer networks with multiple dynamic patterns. Taken together, these theoretical and computational findings suggest that threshold-linear networks may be a valuable tool for understanding the relationship between network connectivity and emergent dynamics.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Diversity of Emergent Dynamics in Competitive Threshold-Linear Networks\",\"authors\":\"Katherine Morrison, Anda Degeratu, Vladimir Itskov, Carina Curto\",\"doi\":\"10.1137/22m1541666\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"SIAM Journal on Applied Dynamical Systems, Volume 23, Issue 1, Page 855-884, March 2024. <br/> Abstract.Threshold-linear networks consist of simple units interacting in the presence of a threshold nonlinearity. Competitive threshold-linear networks have long been known to exhibit multistability, where the activity of the network settles into one of potentially many steady states. In this work, we find conditions that guarantee the absence of steady states, while maintaining bounded activity. These conditions lead us to define a combinatorial family of competitive threshold-linear networks, parametrized by a simple directed graph. By exploring this family, we discover that threshold-linear networks are capable of displaying a surprisingly rich variety of nonlinear dynamics, including limit cycles, quasi-periodic attractors, and chaos. In particular, several types of nonlinear behaviors can co-exist in the same network. Our mathematical results also enable us to engineer networks with multiple dynamic patterns. Taken together, these theoretical and computational findings suggest that threshold-linear networks may be a valuable tool for understanding the relationship between network connectivity and emergent dynamics.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-03-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1137/22m1541666\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1137/22m1541666","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Diversity of Emergent Dynamics in Competitive Threshold-Linear Networks
SIAM Journal on Applied Dynamical Systems, Volume 23, Issue 1, Page 855-884, March 2024. Abstract.Threshold-linear networks consist of simple units interacting in the presence of a threshold nonlinearity. Competitive threshold-linear networks have long been known to exhibit multistability, where the activity of the network settles into one of potentially many steady states. In this work, we find conditions that guarantee the absence of steady states, while maintaining bounded activity. These conditions lead us to define a combinatorial family of competitive threshold-linear networks, parametrized by a simple directed graph. By exploring this family, we discover that threshold-linear networks are capable of displaying a surprisingly rich variety of nonlinear dynamics, including limit cycles, quasi-periodic attractors, and chaos. In particular, several types of nonlinear behaviors can co-exist in the same network. Our mathematical results also enable us to engineer networks with multiple dynamic patterns. Taken together, these theoretical and computational findings suggest that threshold-linear networks may be a valuable tool for understanding the relationship between network connectivity and emergent dynamics.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.