泛素连接酶亚基 FBXO9 可抑制 V-ATP 酶的组装并阻碍肺癌转移

IF 9.4 1区 医学 Q1 HEMATOLOGY
Liang Liu, Xiaodong Chen, Leilei Wu, Kaizong Huang, Zhenyi Wang, Yaolin Zheng, Cheng Zheng, Zhenshan Zhang, Jiayan Chen, Jiaming Wei, Song Chen, Weilin Jin, Jinfei Chen, Dongping Wei, Yaping Xu
{"title":"泛素连接酶亚基 FBXO9 可抑制 V-ATP 酶的组装并阻碍肺癌转移","authors":"Liang Liu, Xiaodong Chen, Leilei Wu, Kaizong Huang, Zhenyi Wang, Yaolin Zheng, Cheng Zheng, Zhenshan Zhang, Jiayan Chen, Jiaming Wei, Song Chen, Weilin Jin, Jinfei Chen, Dongping Wei, Yaping Xu","doi":"10.1186/s40164-024-00497-4","DOIUrl":null,"url":null,"abstract":"The evolutionarily conserved protein FBXO9 acts as a substrate receptor for the SKP1-cullin-1-RBX1 ubiquitin ligase and is implicated in cancer, exhibiting either tumor-suppressive or oncogenic effects depending on the specific tumor type. However, their role in lung cancer metastasis remains unclear. Lentiviral vectors carrying miRNA-based shRNA sequences for gene-specific knockdown were generated, and Lenti-CRISPR-Cas9 vectors containing gene-specific sgRNA sequences were designed. Gene overexpression was achieved using doxycycline-inducible lentiviral constructs, while gene knockdown or knockout cells were generated using shRNA and CRISPR-Cas9, respectively. Functional assays included migration, clonogenic survival assays, tumor sphere assays, and protein interaction studies using mass spectrometry, immunoprecipitation, and immunoblot analysis. This study identified FBXO9 as a crucial regulator that suppresses lung cancer cell migration, tumor sphere growth and restricts metastasis. We showed that FBXO9 facilitates the ubiquitination of the catalytic subunit A (ATP6V1A) of the Vacuolar-type H+-ATPase (V-ATPase), resulting in its interaction with the cytoplasmic chaperone HSPA8 and subsequent sequestration within the cytoplasm. This process hinders the assembly of functional V-ATPase, resulting in reduced vesicular acidification. In contrast, depletion of FBXO9 reduced ATP6V1A ubiquitination, resulting in increased V-ATPase assembly and vesicular acidification, thus promoting pro-metastatic Wnt signaling and metastasis of lung cancer cells. Furthermore, we demonstrated the effectiveness of inhibitors targeting V-ATPase in inhibiting lung cancer metastasis in a mouse model. Finally, we established a correlation between lower FBXO9 levels and poorer survival outcomes in patients with lung cancer. These findings collectively elucidate the critical role of FBXO9 in regulating V-ATPase assembly and provide a molecular basis for FBXO9’s function in inhibiting lung cancer metastasis. This highlights the potential therapeutic opportunities of FBXO9 supplementation.","PeriodicalId":12180,"journal":{"name":"Experimental Hematology & Oncology","volume":null,"pages":null},"PeriodicalIF":9.4000,"publicationDate":"2024-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Ubiquitin ligase subunit FBXO9 inhibits V-ATPase assembly and impedes lung cancer metastasis\",\"authors\":\"Liang Liu, Xiaodong Chen, Leilei Wu, Kaizong Huang, Zhenyi Wang, Yaolin Zheng, Cheng Zheng, Zhenshan Zhang, Jiayan Chen, Jiaming Wei, Song Chen, Weilin Jin, Jinfei Chen, Dongping Wei, Yaping Xu\",\"doi\":\"10.1186/s40164-024-00497-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The evolutionarily conserved protein FBXO9 acts as a substrate receptor for the SKP1-cullin-1-RBX1 ubiquitin ligase and is implicated in cancer, exhibiting either tumor-suppressive or oncogenic effects depending on the specific tumor type. However, their role in lung cancer metastasis remains unclear. Lentiviral vectors carrying miRNA-based shRNA sequences for gene-specific knockdown were generated, and Lenti-CRISPR-Cas9 vectors containing gene-specific sgRNA sequences were designed. Gene overexpression was achieved using doxycycline-inducible lentiviral constructs, while gene knockdown or knockout cells were generated using shRNA and CRISPR-Cas9, respectively. Functional assays included migration, clonogenic survival assays, tumor sphere assays, and protein interaction studies using mass spectrometry, immunoprecipitation, and immunoblot analysis. This study identified FBXO9 as a crucial regulator that suppresses lung cancer cell migration, tumor sphere growth and restricts metastasis. We showed that FBXO9 facilitates the ubiquitination of the catalytic subunit A (ATP6V1A) of the Vacuolar-type H+-ATPase (V-ATPase), resulting in its interaction with the cytoplasmic chaperone HSPA8 and subsequent sequestration within the cytoplasm. This process hinders the assembly of functional V-ATPase, resulting in reduced vesicular acidification. In contrast, depletion of FBXO9 reduced ATP6V1A ubiquitination, resulting in increased V-ATPase assembly and vesicular acidification, thus promoting pro-metastatic Wnt signaling and metastasis of lung cancer cells. Furthermore, we demonstrated the effectiveness of inhibitors targeting V-ATPase in inhibiting lung cancer metastasis in a mouse model. Finally, we established a correlation between lower FBXO9 levels and poorer survival outcomes in patients with lung cancer. These findings collectively elucidate the critical role of FBXO9 in regulating V-ATPase assembly and provide a molecular basis for FBXO9’s function in inhibiting lung cancer metastasis. This highlights the potential therapeutic opportunities of FBXO9 supplementation.\",\"PeriodicalId\":12180,\"journal\":{\"name\":\"Experimental Hematology & Oncology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":9.4000,\"publicationDate\":\"2024-03-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Experimental Hematology & Oncology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1186/s40164-024-00497-4\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"HEMATOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Experimental Hematology & Oncology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s40164-024-00497-4","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"HEMATOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

进化保守的蛋白质FBXO9是SKP1-cullin-1-RBX1泛素连接酶的底物受体,与癌症有牵连,根据具体的肿瘤类型表现出抑制肿瘤或致癌的作用。然而,它们在肺癌转移中的作用仍不清楚。研究人员生成了携带基于 miRNA 的 shRNA 序列的慢病毒载体,用于基因特异性敲除,并设计了包含基因特异性 sgRNA 序列的 Lenti-CRISPR-Cas9 载体。使用强力霉素诱导的慢病毒构建体实现了基因过表达,而基因敲除或基因敲除细胞则分别使用 shRNA 和 CRISPR-Cas9 生成。功能测试包括迁移、克隆性存活试验、肿瘤球试验,以及利用质谱、免疫沉淀和免疫印迹分析进行的蛋白质相互作用研究。这项研究发现 FBXO9 是抑制肺癌细胞迁移、瘤球生长和限制转移的关键调控因子。我们发现,FBXO9 促进了空泡型 H+-ATPase(V-ATPase)催化亚基 A(ATP6V1A)的泛素化,导致其与细胞质伴侣 HSPA8 相互作用,并随后螯合在细胞质中。这一过程阻碍了功能性 V-ATPase 的组装,导致囊泡酸化减少。与此相反,FBXO9 的耗竭减少了 ATP6V1A 的泛素化,导致 V-ATPase 组装和液泡酸化增加,从而促进了 Wnt 信号的转移和肺癌细胞的转移。此外,我们还在小鼠模型中证明了靶向 V-ATPase 的抑制剂在抑制肺癌转移方面的有效性。最后,我们确定了较低的 FBXO9 水平与肺癌患者较差的生存结果之间的相关性。这些发现共同阐明了 FBXO9 在调节 V-ATPase 组装中的关键作用,并为 FBXO9 抑制肺癌转移的功能提供了分子基础。这凸显了补充 FBXO9 的潜在治疗机会。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Ubiquitin ligase subunit FBXO9 inhibits V-ATPase assembly and impedes lung cancer metastasis
The evolutionarily conserved protein FBXO9 acts as a substrate receptor for the SKP1-cullin-1-RBX1 ubiquitin ligase and is implicated in cancer, exhibiting either tumor-suppressive or oncogenic effects depending on the specific tumor type. However, their role in lung cancer metastasis remains unclear. Lentiviral vectors carrying miRNA-based shRNA sequences for gene-specific knockdown were generated, and Lenti-CRISPR-Cas9 vectors containing gene-specific sgRNA sequences were designed. Gene overexpression was achieved using doxycycline-inducible lentiviral constructs, while gene knockdown or knockout cells were generated using shRNA and CRISPR-Cas9, respectively. Functional assays included migration, clonogenic survival assays, tumor sphere assays, and protein interaction studies using mass spectrometry, immunoprecipitation, and immunoblot analysis. This study identified FBXO9 as a crucial regulator that suppresses lung cancer cell migration, tumor sphere growth and restricts metastasis. We showed that FBXO9 facilitates the ubiquitination of the catalytic subunit A (ATP6V1A) of the Vacuolar-type H+-ATPase (V-ATPase), resulting in its interaction with the cytoplasmic chaperone HSPA8 and subsequent sequestration within the cytoplasm. This process hinders the assembly of functional V-ATPase, resulting in reduced vesicular acidification. In contrast, depletion of FBXO9 reduced ATP6V1A ubiquitination, resulting in increased V-ATPase assembly and vesicular acidification, thus promoting pro-metastatic Wnt signaling and metastasis of lung cancer cells. Furthermore, we demonstrated the effectiveness of inhibitors targeting V-ATPase in inhibiting lung cancer metastasis in a mouse model. Finally, we established a correlation between lower FBXO9 levels and poorer survival outcomes in patients with lung cancer. These findings collectively elucidate the critical role of FBXO9 in regulating V-ATPase assembly and provide a molecular basis for FBXO9’s function in inhibiting lung cancer metastasis. This highlights the potential therapeutic opportunities of FBXO9 supplementation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
12.60
自引率
7.30%
发文量
97
审稿时长
6 weeks
期刊介绍: Experimental Hematology & Oncology is an open access journal that encompasses all aspects of hematology and oncology with an emphasis on preclinical, basic, patient-oriented and translational research. The journal acts as an international platform for sharing laboratory findings in these areas and makes a deliberate effort to publish clinical trials with 'negative' results and basic science studies with provocative findings. Experimental Hematology & Oncology publishes original work, hypothesis, commentaries and timely reviews. With open access and rapid turnaround time from submission to publication, the journal strives to be a hub for disseminating new knowledge and discussing controversial topics for both basic scientists and busy clinicians in the closely related fields of hematology and oncology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信