用于中文对话级依赖关系解析的 LLM 辅助数据扩展

IF 9.3 2区 计算机科学
Meishan Zhang, Gongyao Jiang, Shuang Liu, Jing Chen, Min Zhang
{"title":"用于中文对话级依赖关系解析的 LLM 辅助数据扩展","authors":"Meishan Zhang, Gongyao Jiang, Shuang Liu, Jing Chen, Min Zhang","doi":"10.1162/coli_a_00515","DOIUrl":null,"url":null,"abstract":"Dialogue–level dependency parsing, despite its growing academic interest, often encounters underperformance issues due to resource shortages. A potential solution to this challenge is data augmentation. In recent years, large language models (LLMs) have demonstrated strong capabilities in generation which can facilitate data augmentation greatly. In this study, we focus on Chinese dialogue–level dependency parsing, presenting three simple and effective strategies with LLM to augment the original training instances, namely word–level, syntax–level and discourse–level augmentations, respectively. These strategies enable LLMs to either preserve or modify dependency structures, thereby assuring accuracy while increasing the diversity of instances at different levels. We conduct experiments on the benchmark dataset released by Jiang et al. (2023) to validate our approach. Results show that our method can greatly boost the parsing performance in various settings, particularly in dependencies among elementary discourse units (EDUs). Lastly, we provide in–depth analysis to show the key points of our data augmentation strategies.","PeriodicalId":49089,"journal":{"name":"Computational Linguistics","volume":"72 1","pages":""},"PeriodicalIF":9.3000,"publicationDate":"2024-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"LLM–Assisted Data Augmentation for Chinese Dialogue–Level Dependency Parsing\",\"authors\":\"Meishan Zhang, Gongyao Jiang, Shuang Liu, Jing Chen, Min Zhang\",\"doi\":\"10.1162/coli_a_00515\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Dialogue–level dependency parsing, despite its growing academic interest, often encounters underperformance issues due to resource shortages. A potential solution to this challenge is data augmentation. In recent years, large language models (LLMs) have demonstrated strong capabilities in generation which can facilitate data augmentation greatly. In this study, we focus on Chinese dialogue–level dependency parsing, presenting three simple and effective strategies with LLM to augment the original training instances, namely word–level, syntax–level and discourse–level augmentations, respectively. These strategies enable LLMs to either preserve or modify dependency structures, thereby assuring accuracy while increasing the diversity of instances at different levels. We conduct experiments on the benchmark dataset released by Jiang et al. (2023) to validate our approach. Results show that our method can greatly boost the parsing performance in various settings, particularly in dependencies among elementary discourse units (EDUs). Lastly, we provide in–depth analysis to show the key points of our data augmentation strategies.\",\"PeriodicalId\":49089,\"journal\":{\"name\":\"Computational Linguistics\",\"volume\":\"72 1\",\"pages\":\"\"},\"PeriodicalIF\":9.3000,\"publicationDate\":\"2024-03-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computational Linguistics\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1162/coli_a_00515\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Linguistics","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1162/coli_a_00515","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

尽管学术界对对话级依赖关系解析的兴趣与日俱增,但由于资源短缺,对话级依赖关系解析经常会遇到性能不足的问题。解决这一难题的潜在方法是数据增强。近年来,大型语言模型(LLM)在生成方面表现出了强大的能力,可以极大地促进数据扩增。在本研究中,我们以中文对话级依赖解析为重点,提出了三种简单有效的 LLM 扩增原始训练实例的策略,分别是词级扩增、句法级扩增和话语级扩增。这些策略使 LLM 能够保留或修改依赖结构,从而在保证准确性的同时增加不同层次实例的多样性。我们在 Jiang 等人(2023 年)发布的基准数据集上进行了实验,以验证我们的方法。结果表明,我们的方法可以在各种情况下大大提高解析性能,尤其是在基本话语单元(EDU)之间的依赖关系中。最后,我们进行了深入分析,以展示我们的数据增强策略的关键点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
LLM–Assisted Data Augmentation for Chinese Dialogue–Level Dependency Parsing
Dialogue–level dependency parsing, despite its growing academic interest, often encounters underperformance issues due to resource shortages. A potential solution to this challenge is data augmentation. In recent years, large language models (LLMs) have demonstrated strong capabilities in generation which can facilitate data augmentation greatly. In this study, we focus on Chinese dialogue–level dependency parsing, presenting three simple and effective strategies with LLM to augment the original training instances, namely word–level, syntax–level and discourse–level augmentations, respectively. These strategies enable LLMs to either preserve or modify dependency structures, thereby assuring accuracy while increasing the diversity of instances at different levels. We conduct experiments on the benchmark dataset released by Jiang et al. (2023) to validate our approach. Results show that our method can greatly boost the parsing performance in various settings, particularly in dependencies among elementary discourse units (EDUs). Lastly, we provide in–depth analysis to show the key points of our data augmentation strategies.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Computational Linguistics
Computational Linguistics Computer Science-Artificial Intelligence
自引率
0.00%
发文量
45
期刊介绍: Computational Linguistics is the longest-running publication devoted exclusively to the computational and mathematical properties of language and the design and analysis of natural language processing systems. This highly regarded quarterly offers university and industry linguists, computational linguists, artificial intelligence and machine learning investigators, cognitive scientists, speech specialists, and philosophers the latest information about the computational aspects of all the facets of research on language.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信