可对称卡-莫迪代数的卡西米尔连接的单色性

IF 2.6 1区 数学 Q1 MATHEMATICS
Andrea Appel, Valerio Toledano Laredo
{"title":"可对称卡-莫迪代数的卡西米尔连接的单色性","authors":"Andrea Appel, Valerio Toledano Laredo","doi":"10.1007/s00222-024-01242-8","DOIUrl":null,"url":null,"abstract":"<p>Let <span>\\(\\mathfrak {g}\\)</span> be a symmetrisable Kac–Moody algebra and <span>\\(V\\)</span> an integrable <span>\\(\\mathfrak {g}\\)</span>–module in category <span>\\(\\mathcal {O}\\)</span>. We show that the monodromy of the (normally ordered) rational Casimir connection on <span>\\(V\\)</span> can be made equivariant with respect to the Weyl group <span>\\(W\\)</span> of <span>\\(\\mathfrak {g}\\)</span>, and therefore defines an action of the braid group <span>\\(\\mathcal {B}_{W}\\)</span> on <span>\\(V\\)</span>. We then prove that this action is canonically equivalent to the quantum Weyl group action of <span>\\(\\mathcal {B}_{W}\\)</span> on a quantum deformation of <span>\\(V\\)</span>, that is an integrable, category <span>\\(\\mathcal {O}\\)</span> module <span>\\(\\mathcal {V}\\)</span> over the quantum group <span>\\(U_{\\hbar }\\mathfrak {g}\\)</span> such that <span>\\(\\mathcal {V}/\\hbar \\mathcal {V}\\)</span> is isomorphic to <span>\\(V\\)</span>. This extends a result of the second author which is valid for <span>\\(\\mathfrak {g}\\)</span> semisimple.</p>","PeriodicalId":14429,"journal":{"name":"Inventiones mathematicae","volume":"9 1","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2024-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Monodromy of the Casimir connection of a symmetrisable Kac–Moody algebra\",\"authors\":\"Andrea Appel, Valerio Toledano Laredo\",\"doi\":\"10.1007/s00222-024-01242-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Let <span>\\\\(\\\\mathfrak {g}\\\\)</span> be a symmetrisable Kac–Moody algebra and <span>\\\\(V\\\\)</span> an integrable <span>\\\\(\\\\mathfrak {g}\\\\)</span>–module in category <span>\\\\(\\\\mathcal {O}\\\\)</span>. We show that the monodromy of the (normally ordered) rational Casimir connection on <span>\\\\(V\\\\)</span> can be made equivariant with respect to the Weyl group <span>\\\\(W\\\\)</span> of <span>\\\\(\\\\mathfrak {g}\\\\)</span>, and therefore defines an action of the braid group <span>\\\\(\\\\mathcal {B}_{W}\\\\)</span> on <span>\\\\(V\\\\)</span>. We then prove that this action is canonically equivalent to the quantum Weyl group action of <span>\\\\(\\\\mathcal {B}_{W}\\\\)</span> on a quantum deformation of <span>\\\\(V\\\\)</span>, that is an integrable, category <span>\\\\(\\\\mathcal {O}\\\\)</span> module <span>\\\\(\\\\mathcal {V}\\\\)</span> over the quantum group <span>\\\\(U_{\\\\hbar }\\\\mathfrak {g}\\\\)</span> such that <span>\\\\(\\\\mathcal {V}/\\\\hbar \\\\mathcal {V}\\\\)</span> is isomorphic to <span>\\\\(V\\\\)</span>. This extends a result of the second author which is valid for <span>\\\\(\\\\mathfrak {g}\\\\)</span> semisimple.</p>\",\"PeriodicalId\":14429,\"journal\":{\"name\":\"Inventiones mathematicae\",\"volume\":\"9 1\",\"pages\":\"\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-03-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Inventiones mathematicae\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s00222-024-01242-8\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Inventiones mathematicae","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00222-024-01242-8","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

让 \(\mathfrak {g}\) 是一个可对称的 Kac-Moody 代数,并且 \(V\) 是类别 \(\mathcal {O}\) 中的一个可积分的 \(\mathfrak {g\})- 模块。我们证明了在\(V\)上的(正常有序的)理性卡西米尔连接的单旋转可以等价于\(\mathfrak {g}\) 的韦尔群\(W\),因此定义了辫子群\(\mathcal {B}_{W}\) 在\(V\)上的作用。然后我们证明,这个作用等价于 \(\mathcal {B}_{W}\) 对 \(V\) 的量子变形的量子韦尔群作用,这是一个可积分的、量子群(U_{/hbar }\mathfrak {g}/)上的类(\mathcal {O}/)模块(\mathcal {V}/),使得(\mathcal {V}/\hbar \mathcal {V}/)与(V)同构。这扩展了第二位作者的一个结果,该结果对(\mathfrak {g}\ )半简单有效。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Monodromy of the Casimir connection of a symmetrisable Kac–Moody algebra

Monodromy of the Casimir connection of a symmetrisable Kac–Moody algebra

Let \(\mathfrak {g}\) be a symmetrisable Kac–Moody algebra and \(V\) an integrable \(\mathfrak {g}\)–module in category \(\mathcal {O}\). We show that the monodromy of the (normally ordered) rational Casimir connection on \(V\) can be made equivariant with respect to the Weyl group \(W\) of \(\mathfrak {g}\), and therefore defines an action of the braid group \(\mathcal {B}_{W}\) on \(V\). We then prove that this action is canonically equivalent to the quantum Weyl group action of \(\mathcal {B}_{W}\) on a quantum deformation of \(V\), that is an integrable, category \(\mathcal {O}\) module \(\mathcal {V}\) over the quantum group \(U_{\hbar }\mathfrak {g}\) such that \(\mathcal {V}/\hbar \mathcal {V}\) is isomorphic to \(V\). This extends a result of the second author which is valid for \(\mathfrak {g}\) semisimple.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Inventiones mathematicae
Inventiones mathematicae 数学-数学
CiteScore
5.60
自引率
3.20%
发文量
76
审稿时长
12 months
期刊介绍: This journal is published at frequent intervals to bring out new contributions to mathematics. It is a policy of the journal to publish papers within four months of acceptance. Once a paper is accepted it goes immediately into production and no changes can be made by the author(s).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信