Masaki Kashiwara, Myungho Kim, Se-jin Oh, Euiyong Park
{"title":"单义分类和量子仿射代数 II","authors":"Masaki Kashiwara, Myungho Kim, Se-jin Oh, Euiyong Park","doi":"10.1007/s00222-024-01249-1","DOIUrl":null,"url":null,"abstract":"<p>We introduce a new family of real simple modules over the quantum affine algebras, called the affine determinantial modules, which contains the Kirillov-Reshetikhin (KR)-modules as a special subfamily, and then prove T-systems among them which generalize the T-systems among KR-modules and unipotent quantum minors in the quantum unipotent coordinate algebras simultaneously. We develop new combinatorial tools: admissible chains of <span>\\(i\\)</span>-boxes which produce commuting families of affine determinantial modules, and box moves which describe the T-system in a combinatorial way. Using these results, we prove that various module categories over the quantum affine algebras provide monoidal categorifications of cluster algebras. As special cases, Hernandez-Leclerc categories <span>\\(\\mathscr{C}_{{\\mathfrak{g}}}^{0}\\)</span> and <span>\\(\\mathscr{C}_{{\\mathfrak{g}}}^{-}\\)</span> provide monoidal categorifications of the cluster algebras for an arbitrary quantum affine algebra.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Monoidal categorification and quantum affine algebras II\",\"authors\":\"Masaki Kashiwara, Myungho Kim, Se-jin Oh, Euiyong Park\",\"doi\":\"10.1007/s00222-024-01249-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We introduce a new family of real simple modules over the quantum affine algebras, called the affine determinantial modules, which contains the Kirillov-Reshetikhin (KR)-modules as a special subfamily, and then prove T-systems among them which generalize the T-systems among KR-modules and unipotent quantum minors in the quantum unipotent coordinate algebras simultaneously. We develop new combinatorial tools: admissible chains of <span>\\\\(i\\\\)</span>-boxes which produce commuting families of affine determinantial modules, and box moves which describe the T-system in a combinatorial way. Using these results, we prove that various module categories over the quantum affine algebras provide monoidal categorifications of cluster algebras. As special cases, Hernandez-Leclerc categories <span>\\\\(\\\\mathscr{C}_{{\\\\mathfrak{g}}}^{0}\\\\)</span> and <span>\\\\(\\\\mathscr{C}_{{\\\\mathfrak{g}}}^{-}\\\\)</span> provide monoidal categorifications of the cluster algebras for an arbitrary quantum affine algebra.</p>\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-03-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s00222-024-01249-1\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00222-024-01249-1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0
摘要
我们引入了量子仿射代数上的一个新的实简模块族,称为仿射行列式模块,其中包含作为一个特殊子族的基里洛夫-列舍提金(KR)模块,然后证明了它们之间的 T 系统,这些 T 系统同时概括了量子单能坐标代数中的 KR 模块和单能量子小数之间的 T 系统。我们开发了新的组合工具:产生仿射行列式模块换向族的(i\)盒的可容许链,以及以组合方式描述 T 系统的盒移动。利用这些结果,我们证明了量子仿射代数上的各种模块类别提供了簇代数的单环分类。作为特例,埃尔南德斯-勒克莱尔范畴(Hernandez-Leclerc categories \(\mathscr{C}_{\mathfrak{g}}}^{0}/)和(\mathscr{C}_{\mathfrak{g}}}^{-}/)为任意量子仿射代数提供了簇代数的一元分类。
Monoidal categorification and quantum affine algebras II
We introduce a new family of real simple modules over the quantum affine algebras, called the affine determinantial modules, which contains the Kirillov-Reshetikhin (KR)-modules as a special subfamily, and then prove T-systems among them which generalize the T-systems among KR-modules and unipotent quantum minors in the quantum unipotent coordinate algebras simultaneously. We develop new combinatorial tools: admissible chains of \(i\)-boxes which produce commuting families of affine determinantial modules, and box moves which describe the T-system in a combinatorial way. Using these results, we prove that various module categories over the quantum affine algebras provide monoidal categorifications of cluster algebras. As special cases, Hernandez-Leclerc categories \(\mathscr{C}_{{\mathfrak{g}}}^{0}\) and \(\mathscr{C}_{{\mathfrak{g}}}^{-}\) provide monoidal categorifications of the cluster algebras for an arbitrary quantum affine algebra.