A. G. Kastsova, N. V. Glebova, A. A. Nechitailov, A. O. Krasnova, A. O. Pelageikina, I. A. Eliseyev
{"title":"通过超声波分散获得的石墨烯的电子能谱分析","authors":"A. G. Kastsova, N. V. Glebova, A. A. Nechitailov, A. O. Krasnova, A. O. Pelageikina, I. A. Eliseyev","doi":"10.1134/s1063785023900297","DOIUrl":null,"url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Abstract</h3><p>A technology for obtaining graphene by means of ultrasonic dispersion of thermally expanded graphite in the presence of a surface-active polymer Nation is presented. The technology makes it possible to obtain large amounts of low-layer (1–3 layers) graphene in a relatively short time. An approach to control the dispersion process based on UV spectroscopy of dispersions is described. A mechanism is proposed for the effect of a surface-active polymer on the production of low-layer graphene by ultrasonic dispersion.</p>","PeriodicalId":784,"journal":{"name":"Technical Physics Letters","volume":null,"pages":null},"PeriodicalIF":0.8000,"publicationDate":"2024-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Electronic Spectroscopy of Graphene Obtained by Ultrasonic Dispersion\",\"authors\":\"A. G. Kastsova, N. V. Glebova, A. A. Nechitailov, A. O. Krasnova, A. O. Pelageikina, I. A. Eliseyev\",\"doi\":\"10.1134/s1063785023900297\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<h3 data-test=\\\"abstract-sub-heading\\\">Abstract</h3><p>A technology for obtaining graphene by means of ultrasonic dispersion of thermally expanded graphite in the presence of a surface-active polymer Nation is presented. The technology makes it possible to obtain large amounts of low-layer (1–3 layers) graphene in a relatively short time. An approach to control the dispersion process based on UV spectroscopy of dispersions is described. A mechanism is proposed for the effect of a surface-active polymer on the production of low-layer graphene by ultrasonic dispersion.</p>\",\"PeriodicalId\":784,\"journal\":{\"name\":\"Technical Physics Letters\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2024-03-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Technical Physics Letters\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1134/s1063785023900297\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"PHYSICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Technical Physics Letters","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1134/s1063785023900297","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
Electronic Spectroscopy of Graphene Obtained by Ultrasonic Dispersion
Abstract
A technology for obtaining graphene by means of ultrasonic dispersion of thermally expanded graphite in the presence of a surface-active polymer Nation is presented. The technology makes it possible to obtain large amounts of low-layer (1–3 layers) graphene in a relatively short time. An approach to control the dispersion process based on UV spectroscopy of dispersions is described. A mechanism is proposed for the effect of a surface-active polymer on the production of low-layer graphene by ultrasonic dispersion.
期刊介绍:
Technical Physics Letters is a companion journal to Technical Physics and offers rapid publication of developments in theoretical and experimental physics with potential technological applications. Recent emphasis has included many papers on gas lasers and on lasing in semiconductors, as well as many reports on high Tc superconductivity. The excellent coverage of plasma physics seen in the parent journal, Technical Physics, is also present here with quick communication of developments in theoretical and experimental work in all fields with probable technical applications. Topics covered are basic and applied physics; plasma physics; solid state physics; physical electronics; accelerators; microwave electron devices; holography.