通过超声波分散获得的石墨烯的电子能谱分析

IF 0.8 4区 物理与天体物理 Q4 PHYSICS, APPLIED
A. G. Kastsova, N. V. Glebova, A. A. Nechitailov, A. O. Krasnova, A. O. Pelageikina, I. A. Eliseyev
{"title":"通过超声波分散获得的石墨烯的电子能谱分析","authors":"A. G. Kastsova, N. V. Glebova, A. A. Nechitailov, A. O. Krasnova, A. O. Pelageikina, I. A. Eliseyev","doi":"10.1134/s1063785023900297","DOIUrl":null,"url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Abstract</h3><p>A technology for obtaining graphene by means of ultrasonic dispersion of thermally expanded graphite in the presence of a surface-active polymer Nation is presented. The technology makes it possible to obtain large amounts of low-layer (1–3 layers) graphene in a relatively short time. An approach to control the dispersion process based on UV spectroscopy of dispersions is described. A mechanism is proposed for the effect of a surface-active polymer on the production of low-layer graphene by ultrasonic dispersion.</p>","PeriodicalId":784,"journal":{"name":"Technical Physics Letters","volume":null,"pages":null},"PeriodicalIF":0.8000,"publicationDate":"2024-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Electronic Spectroscopy of Graphene Obtained by Ultrasonic Dispersion\",\"authors\":\"A. G. Kastsova, N. V. Glebova, A. A. Nechitailov, A. O. Krasnova, A. O. Pelageikina, I. A. Eliseyev\",\"doi\":\"10.1134/s1063785023900297\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<h3 data-test=\\\"abstract-sub-heading\\\">Abstract</h3><p>A technology for obtaining graphene by means of ultrasonic dispersion of thermally expanded graphite in the presence of a surface-active polymer Nation is presented. The technology makes it possible to obtain large amounts of low-layer (1–3 layers) graphene in a relatively short time. An approach to control the dispersion process based on UV spectroscopy of dispersions is described. A mechanism is proposed for the effect of a surface-active polymer on the production of low-layer graphene by ultrasonic dispersion.</p>\",\"PeriodicalId\":784,\"journal\":{\"name\":\"Technical Physics Letters\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2024-03-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Technical Physics Letters\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1134/s1063785023900297\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"PHYSICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Technical Physics Letters","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1134/s1063785023900297","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

摘要 介绍了一种在表面活性聚合物 Nation 存在下通过超声波分散热膨胀石墨来获得石墨烯的技术。该技术可在相对较短的时间内获得大量低层(1-3 层)石墨烯。介绍了一种基于分散体紫外光谱控制分散过程的方法。提出了表面活性聚合物对超声波分散法生产低层石墨烯的影响机制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Electronic Spectroscopy of Graphene Obtained by Ultrasonic Dispersion

Electronic Spectroscopy of Graphene Obtained by Ultrasonic Dispersion

Abstract

A technology for obtaining graphene by means of ultrasonic dispersion of thermally expanded graphite in the presence of a surface-active polymer Nation is presented. The technology makes it possible to obtain large amounts of low-layer (1–3 layers) graphene in a relatively short time. An approach to control the dispersion process based on UV spectroscopy of dispersions is described. A mechanism is proposed for the effect of a surface-active polymer on the production of low-layer graphene by ultrasonic dispersion.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Technical Physics Letters
Technical Physics Letters 物理-物理:应用
CiteScore
1.50
自引率
0.00%
发文量
44
审稿时长
2-4 weeks
期刊介绍: Technical Physics Letters is a companion journal to Technical Physics and offers rapid publication of developments in theoretical and experimental physics with potential technological applications. Recent emphasis has included many papers on gas lasers and on lasing in semiconductors, as well as many reports on high Tc superconductivity. The excellent coverage of plasma physics seen in the parent journal, Technical Physics, is also present here with quick communication of developments in theoretical and experimental work in all fields with probable technical applications. Topics covered are basic and applied physics; plasma physics; solid state physics; physical electronics; accelerators; microwave electron devices; holography.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信