{"title":"左变分布与平面分布的衍射关系","authors":"Sebastiano Nicolussi Golo, Alessandro Ottazzi","doi":"10.1007/s10711-024-00905-3","DOIUrl":null,"url":null,"abstract":"<p>For a stratified group <i>G</i>, we construct a class of Lie groups endowed with a left-invariant distribution locally diffeomorphic to the flat distribution of <i>G</i>. Vice versa, we show that all Lie groups with a left-invariant distribution that is locally diffeomorphic to the flat distribution of <i>G</i> belong to the class we constructed, if the Lie algebra of <i>G</i> has finite Tanaka prolongation.\n</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Left-invariant distributions diffeomorphic to flat distributions\",\"authors\":\"Sebastiano Nicolussi Golo, Alessandro Ottazzi\",\"doi\":\"10.1007/s10711-024-00905-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>For a stratified group <i>G</i>, we construct a class of Lie groups endowed with a left-invariant distribution locally diffeomorphic to the flat distribution of <i>G</i>. Vice versa, we show that all Lie groups with a left-invariant distribution that is locally diffeomorphic to the flat distribution of <i>G</i> belong to the class we constructed, if the Lie algebra of <i>G</i> has finite Tanaka prolongation.\\n</p>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-03-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s10711-024-00905-3\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10711-024-00905-3","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
反之亦然,我们证明,如果 G 的李代数具有有限的田中延长,那么所有具有与 G 的平面分布局部差分同构的左不变分布的李群都属于我们所构造的类。
Left-invariant distributions diffeomorphic to flat distributions
For a stratified group G, we construct a class of Lie groups endowed with a left-invariant distribution locally diffeomorphic to the flat distribution of G. Vice versa, we show that all Lie groups with a left-invariant distribution that is locally diffeomorphic to the flat distribution of G belong to the class we constructed, if the Lie algebra of G has finite Tanaka prolongation.