{"title":"一类奇异扰动控制系统的平均化:非渐近结果","authors":"","doi":"10.1007/s00498-024-00382-9","DOIUrl":null,"url":null,"abstract":"<h3>Abstract</h3> <p>We study a singularly perturbed control system whose variables are decomposed into groups that change their values with rates of different orders of magnitude. We establish that the slow trajectories of this system are dense in the set of solutions of a certain differential inclusion and discuss an implication of this result for optimal control.</p>","PeriodicalId":51123,"journal":{"name":"Mathematics of Control Signals and Systems","volume":"277 1","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2024-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Averaging of a class of singularly perturbed control systems: a non-asymptotic result\",\"authors\":\"\",\"doi\":\"10.1007/s00498-024-00382-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<h3>Abstract</h3> <p>We study a singularly perturbed control system whose variables are decomposed into groups that change their values with rates of different orders of magnitude. We establish that the slow trajectories of this system are dense in the set of solutions of a certain differential inclusion and discuss an implication of this result for optimal control.</p>\",\"PeriodicalId\":51123,\"journal\":{\"name\":\"Mathematics of Control Signals and Systems\",\"volume\":\"277 1\",\"pages\":\"\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2024-03-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematics of Control Signals and Systems\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1007/s00498-024-00382-9\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematics of Control Signals and Systems","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s00498-024-00382-9","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
Averaging of a class of singularly perturbed control systems: a non-asymptotic result
Abstract
We study a singularly perturbed control system whose variables are decomposed into groups that change their values with rates of different orders of magnitude. We establish that the slow trajectories of this system are dense in the set of solutions of a certain differential inclusion and discuss an implication of this result for optimal control.
期刊介绍:
Mathematics of Control, Signals, and Systems (MCSS) is an international journal devoted to mathematical control and system theory, including system theoretic aspects of signal processing.
Its unique feature is its focus on mathematical system theory; it concentrates on the mathematical theory of systems with inputs and/or outputs and dynamics that are typically described by deterministic or stochastic ordinary or partial differential equations, differential algebraic equations or difference equations.
Potential topics include, but are not limited to controllability, observability, and realization theory, stability theory of nonlinear systems, system identification, mathematical aspects of switched, hybrid, networked, and stochastic systems, and system theoretic aspects of optimal control and other controller design techniques. Application oriented papers are welcome if they contain a significant theoretical contribution.