吉川-斯帕尔插值空间的凸性特性

Pub Date : 2024-03-12 DOI:10.1002/mana.202300388
Karol Aleksandrowicz, Stanisław Prus
{"title":"吉川-斯帕尔插值空间的凸性特性","authors":"Karol Aleksandrowicz,&nbsp;Stanisław Prus","doi":"10.1002/mana.202300388","DOIUrl":null,"url":null,"abstract":"<p>We study stability of the three geometric properties: uniform convexity, nearly uniform convexity, and property <span></span><math>\n <semantics>\n <mrow>\n <mo>(</mo>\n <mi>β</mi>\n <mo>)</mo>\n </mrow>\n <annotation>$(\\beta)$</annotation>\n </semantics></math> under the Yoshikawa–Sparr interpolation method when the resulting interpolation space is considered with various equivalent norms. We give an example which shows that interpolation spaces obtained by the discrete and continuous versions of the method need not be isometric and present a method of transferring geometric properties from the discrete case to the continuous one.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Convexity properties of Yoshikawa–Sparr interpolation spaces\",\"authors\":\"Karol Aleksandrowicz,&nbsp;Stanisław Prus\",\"doi\":\"10.1002/mana.202300388\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We study stability of the three geometric properties: uniform convexity, nearly uniform convexity, and property <span></span><math>\\n <semantics>\\n <mrow>\\n <mo>(</mo>\\n <mi>β</mi>\\n <mo>)</mo>\\n </mrow>\\n <annotation>$(\\\\beta)$</annotation>\\n </semantics></math> under the Yoshikawa–Sparr interpolation method when the resulting interpolation space is considered with various equivalent norms. We give an example which shows that interpolation spaces obtained by the discrete and continuous versions of the method need not be isometric and present a method of transferring geometric properties from the discrete case to the continuous one.</p>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-03-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/mana.202300388\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/mana.202300388","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们研究了吉川-斯帕尔插值法的三个几何性质的稳定性:均匀凸性、近似均匀凸性和性质。我们举例说明了用离散和连续版本的方法得到的插值空间不一定是等距的,并提出了一种将几何性质从离散情况转移到连续情况的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Convexity properties of Yoshikawa–Sparr interpolation spaces

We study stability of the three geometric properties: uniform convexity, nearly uniform convexity, and property ( β ) $(\beta)$ under the Yoshikawa–Sparr interpolation method when the resulting interpolation space is considered with various equivalent norms. We give an example which shows that interpolation spaces obtained by the discrete and continuous versions of the method need not be isometric and present a method of transferring geometric properties from the discrete case to the continuous one.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信