{"title":"利用地理加权回归,从 AIS 数据中探索海雾影响下近失船碰撞的空间非平稳性:中国渤海案例研究","authors":"Yongtian Shen, Zhe Zeng, Dan Liu, Pei Du","doi":"10.1007/s13131-022-2137-7","DOIUrl":null,"url":null,"abstract":"<p>Sea fog is a disastrous weather phenomenon, posing a risk to the safety of maritime transportation. Dense sea fogs reduce visibility at sea and have frequently caused ship collisions. This study used a geographically weighted regression (GWR) model to explore the spatial non-stationarity of near-miss collision risk, as detected by a vessel conflict ranking operator (VCRO) model from automatic identification system (AIS) data under the influence of sea fog in the Bohai Sea. Sea fog was identified by a machine learning method that was derived from Himawari-8 satellite data. The spatial distributions of near-miss collision risk, sea fog, and the parameters of GWR were mapped. The results showed that sea fog and near-miss collision risk have specific spatial distribution patterns in the Bohai Sea, in which near-miss collision risk in the fog season is significantly higher than that outside the fog season, especially in the northeast (the sea area near Yingkou Port and Bayuquan Port) and the southeast (the sea area near Yantai Port). GWR outputs further indicated a significant correlation between near-miss collision risk and sea fog in fog season, with higher <i>R</i>-squared (0.890 in fog season, 2018), than outside the fog season (0.723 in non-fog season, 2018). GWR results revealed spatial non-stationarity in the relationships between-near miss collision risk and sea fog and that the significance of these relationships varied locally. Dividing the specific navigation area made it possible to verify that sea fog has a positive impact on near-miss collision risk.</p>","PeriodicalId":6922,"journal":{"name":"Acta Oceanologica Sinica","volume":"24 1","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2024-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Exploring spatial non-stationarity of near-miss ship collisions from AIS data under the influence of sea fog using geographically weighted regression: A case study in the Bohai Sea, China\",\"authors\":\"Yongtian Shen, Zhe Zeng, Dan Liu, Pei Du\",\"doi\":\"10.1007/s13131-022-2137-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Sea fog is a disastrous weather phenomenon, posing a risk to the safety of maritime transportation. Dense sea fogs reduce visibility at sea and have frequently caused ship collisions. This study used a geographically weighted regression (GWR) model to explore the spatial non-stationarity of near-miss collision risk, as detected by a vessel conflict ranking operator (VCRO) model from automatic identification system (AIS) data under the influence of sea fog in the Bohai Sea. Sea fog was identified by a machine learning method that was derived from Himawari-8 satellite data. The spatial distributions of near-miss collision risk, sea fog, and the parameters of GWR were mapped. The results showed that sea fog and near-miss collision risk have specific spatial distribution patterns in the Bohai Sea, in which near-miss collision risk in the fog season is significantly higher than that outside the fog season, especially in the northeast (the sea area near Yingkou Port and Bayuquan Port) and the southeast (the sea area near Yantai Port). GWR outputs further indicated a significant correlation between near-miss collision risk and sea fog in fog season, with higher <i>R</i>-squared (0.890 in fog season, 2018), than outside the fog season (0.723 in non-fog season, 2018). GWR results revealed spatial non-stationarity in the relationships between-near miss collision risk and sea fog and that the significance of these relationships varied locally. Dividing the specific navigation area made it possible to verify that sea fog has a positive impact on near-miss collision risk.</p>\",\"PeriodicalId\":6922,\"journal\":{\"name\":\"Acta Oceanologica Sinica\",\"volume\":\"24 1\",\"pages\":\"\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2024-03-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta Oceanologica Sinica\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1007/s13131-022-2137-7\",\"RegionNum\":3,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"OCEANOGRAPHY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Oceanologica Sinica","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1007/s13131-022-2137-7","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"OCEANOGRAPHY","Score":null,"Total":0}
Exploring spatial non-stationarity of near-miss ship collisions from AIS data under the influence of sea fog using geographically weighted regression: A case study in the Bohai Sea, China
Sea fog is a disastrous weather phenomenon, posing a risk to the safety of maritime transportation. Dense sea fogs reduce visibility at sea and have frequently caused ship collisions. This study used a geographically weighted regression (GWR) model to explore the spatial non-stationarity of near-miss collision risk, as detected by a vessel conflict ranking operator (VCRO) model from automatic identification system (AIS) data under the influence of sea fog in the Bohai Sea. Sea fog was identified by a machine learning method that was derived from Himawari-8 satellite data. The spatial distributions of near-miss collision risk, sea fog, and the parameters of GWR were mapped. The results showed that sea fog and near-miss collision risk have specific spatial distribution patterns in the Bohai Sea, in which near-miss collision risk in the fog season is significantly higher than that outside the fog season, especially in the northeast (the sea area near Yingkou Port and Bayuquan Port) and the southeast (the sea area near Yantai Port). GWR outputs further indicated a significant correlation between near-miss collision risk and sea fog in fog season, with higher R-squared (0.890 in fog season, 2018), than outside the fog season (0.723 in non-fog season, 2018). GWR results revealed spatial non-stationarity in the relationships between-near miss collision risk and sea fog and that the significance of these relationships varied locally. Dividing the specific navigation area made it possible to verify that sea fog has a positive impact on near-miss collision risk.
期刊介绍:
Founded in 1982, Acta Oceanologica Sinica is the official bi-monthly journal of the Chinese Society of Oceanography. It seeks to provide a forum for research papers in the field of oceanography from all over the world. In working to advance scholarly communication it has made the fast publication of high-quality research papers within this field its primary goal.
The journal encourages submissions from all branches of oceanography, including marine physics, marine chemistry, marine geology, marine biology, marine hydrology, marine meteorology, ocean engineering, marine remote sensing and marine environment sciences.
It publishes original research papers, review articles as well as research notes covering the whole spectrum of oceanography. Special issues emanating from related conferences and meetings are also considered. All papers are subject to peer review and are published online at SpringerLink.