无阻尼和强制项悬臂梁振动模型的分岔和精确解

IF 1.9 4区 数学 Q2 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS
Jinsen Zhuang, Guanrong Chen, Jibin Li
{"title":"无阻尼和强制项悬臂梁振动模型的分岔和精确解","authors":"Jinsen Zhuang, Guanrong Chen, Jibin Li","doi":"10.1142/s0218127424500391","DOIUrl":null,"url":null,"abstract":"<p>For the cantilever beam vibration model without damping and forced terms, the corresponding differential system is a planar dynamical system with some singular straight lines. In this paper, by using the techniques from dynamical systems and singular traveling wave theory developed by [Li &amp; Chen, 2007] to analyze its corresponding differential system, the bifurcations and the dynamical behaviors of the corresponding phase portraits are identified and analyzed. Under different parameter conditions, exact homoclinic and heteroclinic solutions, periodic solutions, compacton solutions, as well as peakons and periodic peakons, are all found explicitly.</p>","PeriodicalId":50337,"journal":{"name":"International Journal of Bifurcation and Chaos","volume":null,"pages":null},"PeriodicalIF":1.9000,"publicationDate":"2024-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Bifurcations and Exact Solutions of a Cantilever Beam Vibration Model Without Damping and Forced Terms\",\"authors\":\"Jinsen Zhuang, Guanrong Chen, Jibin Li\",\"doi\":\"10.1142/s0218127424500391\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>For the cantilever beam vibration model without damping and forced terms, the corresponding differential system is a planar dynamical system with some singular straight lines. In this paper, by using the techniques from dynamical systems and singular traveling wave theory developed by [Li &amp; Chen, 2007] to analyze its corresponding differential system, the bifurcations and the dynamical behaviors of the corresponding phase portraits are identified and analyzed. Under different parameter conditions, exact homoclinic and heteroclinic solutions, periodic solutions, compacton solutions, as well as peakons and periodic peakons, are all found explicitly.</p>\",\"PeriodicalId\":50337,\"journal\":{\"name\":\"International Journal of Bifurcation and Chaos\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2024-03-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Bifurcation and Chaos\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1142/s0218127424500391\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Bifurcation and Chaos","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1142/s0218127424500391","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

对于不含阻尼和强制项的悬臂梁振动模型,其对应的微分方程系统是一个平面动力系统,其中存在一些奇异的直线。本文利用 [Li & Chen, 2007] 发展的动力系统和奇异行波理论技术分析其相应的微分系统,确定并分析了相应相位肖像的分岔和动力学行为。在不同的参数条件下,明确地找到了精确的同二次解、异二次解、周期解、紧凑子解以及峰子和周期峰子。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Bifurcations and Exact Solutions of a Cantilever Beam Vibration Model Without Damping and Forced Terms

For the cantilever beam vibration model without damping and forced terms, the corresponding differential system is a planar dynamical system with some singular straight lines. In this paper, by using the techniques from dynamical systems and singular traveling wave theory developed by [Li & Chen, 2007] to analyze its corresponding differential system, the bifurcations and the dynamical behaviors of the corresponding phase portraits are identified and analyzed. Under different parameter conditions, exact homoclinic and heteroclinic solutions, periodic solutions, compacton solutions, as well as peakons and periodic peakons, are all found explicitly.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Bifurcation and Chaos
International Journal of Bifurcation and Chaos 数学-数学跨学科应用
CiteScore
4.10
自引率
13.60%
发文量
237
审稿时长
2-4 weeks
期刊介绍: The International Journal of Bifurcation and Chaos is widely regarded as a leading journal in the exciting fields of chaos theory and nonlinear science. Represented by an international editorial board comprising top researchers from a wide variety of disciplines, it is setting high standards in scientific and production quality. The journal has been reputedly acclaimed by the scientific community around the world, and has featured many important papers by leading researchers from various areas of applied sciences and engineering. The discipline of chaos theory has created a universal paradigm, a scientific parlance, and a mathematical tool for grappling with complex dynamical phenomena. In every field of applied sciences (astronomy, atmospheric sciences, biology, chemistry, economics, geophysics, life and medical sciences, physics, social sciences, ecology, etc.) and engineering (aerospace, chemical, electronic, civil, computer, information, mechanical, software, telecommunication, etc.), the local and global manifestations of chaos and bifurcation have burst forth in an unprecedented universality, linking scientists heretofore unfamiliar with one another''s fields, and offering an opportunity to reshape our grasp of reality.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信