M. U. Farooq, M. I. Hussain, M. Y. Naz, M. M. Makhlouf, S. Shukrullah, A. Ghaffar, K. Ibrahim, N. M. AbdEl-Salam
{"title":"一种新型被动式热对称型太阳能热水器的制造和性能研究","authors":"M. U. Farooq, M. I. Hussain, M. Y. Naz, M. M. Makhlouf, S. Shukrullah, A. Ghaffar, K. Ibrahim, N. M. AbdEl-Salam","doi":"10.1134/s0018151x23030057","DOIUrl":null,"url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Abstract</h3><p>The work presents an example of a passive solar heating system, which utilizes direct solar energy to heat the water for domestic use. A passive thermosyphon heating system was designed, fabricated, and tested for its thermal performance in the semi-arid and four-season climate of the Faisalabad district of Pakistan. The heating system design was based on two-stage storage and natural thermosyphon circulation of water. An enhancement of the thermal performance of the thermosyphon systems by using a semicircular steel pot collector (covered with water carrying copper coil), two-step water storage, and side mirror reflectors was investigated. The experiments were conducted from April to July, 2014 when the ambient temperature was reported approximately between 30 to 45°C. For the cited time duration, the cold-water temperature remained in the range of 18 to 25°C. The maximum water temperature, during the intermittent flow mode operation of the system, remained between 48 and 88°C. In continuous flow mode operation, the hot water temperature remained between 46 and 78°C. Since water temperature in the range of 45 to 50°C is considered suitable for domestic use, the presented design is acceptable for domestic use.</p>","PeriodicalId":13163,"journal":{"name":"High Temperature","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2024-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fabrication and Performance Study of a New Design of Passive Thermosyphon Type Solar Water Heater\",\"authors\":\"M. U. Farooq, M. I. Hussain, M. Y. Naz, M. M. Makhlouf, S. Shukrullah, A. Ghaffar, K. Ibrahim, N. M. AbdEl-Salam\",\"doi\":\"10.1134/s0018151x23030057\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<h3 data-test=\\\"abstract-sub-heading\\\">Abstract</h3><p>The work presents an example of a passive solar heating system, which utilizes direct solar energy to heat the water for domestic use. A passive thermosyphon heating system was designed, fabricated, and tested for its thermal performance in the semi-arid and four-season climate of the Faisalabad district of Pakistan. The heating system design was based on two-stage storage and natural thermosyphon circulation of water. An enhancement of the thermal performance of the thermosyphon systems by using a semicircular steel pot collector (covered with water carrying copper coil), two-step water storage, and side mirror reflectors was investigated. The experiments were conducted from April to July, 2014 when the ambient temperature was reported approximately between 30 to 45°C. For the cited time duration, the cold-water temperature remained in the range of 18 to 25°C. The maximum water temperature, during the intermittent flow mode operation of the system, remained between 48 and 88°C. In continuous flow mode operation, the hot water temperature remained between 46 and 78°C. Since water temperature in the range of 45 to 50°C is considered suitable for domestic use, the presented design is acceptable for domestic use.</p>\",\"PeriodicalId\":13163,\"journal\":{\"name\":\"High Temperature\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2024-03-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"High Temperature\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1134/s0018151x23030057\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"PHYSICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"High Temperature","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1134/s0018151x23030057","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
Fabrication and Performance Study of a New Design of Passive Thermosyphon Type Solar Water Heater
Abstract
The work presents an example of a passive solar heating system, which utilizes direct solar energy to heat the water for domestic use. A passive thermosyphon heating system was designed, fabricated, and tested for its thermal performance in the semi-arid and four-season climate of the Faisalabad district of Pakistan. The heating system design was based on two-stage storage and natural thermosyphon circulation of water. An enhancement of the thermal performance of the thermosyphon systems by using a semicircular steel pot collector (covered with water carrying copper coil), two-step water storage, and side mirror reflectors was investigated. The experiments were conducted from April to July, 2014 when the ambient temperature was reported approximately between 30 to 45°C. For the cited time duration, the cold-water temperature remained in the range of 18 to 25°C. The maximum water temperature, during the intermittent flow mode operation of the system, remained between 48 and 88°C. In continuous flow mode operation, the hot water temperature remained between 46 and 78°C. Since water temperature in the range of 45 to 50°C is considered suitable for domestic use, the presented design is acceptable for domestic use.
期刊介绍:
High Temperature is an international peer reviewed journal that publishes original papers and reviews written by theoretical and experimental researchers. The journal deals with properties and processes in low-temperature plasma; thermophysical properties of substances including pure materials, mixtures and alloys; the properties in the vicinity of the critical point, equations of state; phase equilibrium; heat and mass transfer phenomena, in particular, by forced and free convections; processes of boiling and condensation, radiation, and complex heat transfer; experimental methods and apparatuses; high-temperature facilities for power engineering applications, etc. The journal reflects the current trends in thermophysical research. It presents the results of present-day experimental and theoretical studies in the processes of complex heat transfer, thermal, gas dynamic processes, and processes of heat and mass transfer, as well as the latest advances in the theoretical description of the properties of high-temperature media.