{"title":"基于一般移动总和方法的时间序列数据分割","authors":"Claudia Kirch, Kerstin Reckruehm","doi":"10.1007/s10463-023-00892-4","DOIUrl":null,"url":null,"abstract":"<div><p>We consider the multiple change point problem in a general framework based on estimating equations. This extends classical sample mean-based methodology to include robust methods but also different types of changes such as changes in linear regression or changes in count data including Poisson autoregressive time series. In this framework, we derive a general theory proving consistency for the number of change points and rates of convergence for the estimators of the locations of the change points. More precisely, two different types of MOSUM (moving sum) statistics are considered: A MOSUM-Wald statistic based on differences of local estimators and a MOSUM-score statistic based on a global inspection parameter. The latter is usually computationally less involved in particular in nonlinear problems where no closed form of the estimator is known such that numerical methods are required. Finally, we evaluate the methodology by some simulations as well as using geophysical well-log data.</p></div>","PeriodicalId":55511,"journal":{"name":"Annals of the Institute of Statistical Mathematics","volume":null,"pages":null},"PeriodicalIF":0.8000,"publicationDate":"2024-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Data segmentation for time series based on a general moving sum approach\",\"authors\":\"Claudia Kirch, Kerstin Reckruehm\",\"doi\":\"10.1007/s10463-023-00892-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We consider the multiple change point problem in a general framework based on estimating equations. This extends classical sample mean-based methodology to include robust methods but also different types of changes such as changes in linear regression or changes in count data including Poisson autoregressive time series. In this framework, we derive a general theory proving consistency for the number of change points and rates of convergence for the estimators of the locations of the change points. More precisely, two different types of MOSUM (moving sum) statistics are considered: A MOSUM-Wald statistic based on differences of local estimators and a MOSUM-score statistic based on a global inspection parameter. The latter is usually computationally less involved in particular in nonlinear problems where no closed form of the estimator is known such that numerical methods are required. Finally, we evaluate the methodology by some simulations as well as using geophysical well-log data.</p></div>\",\"PeriodicalId\":55511,\"journal\":{\"name\":\"Annals of the Institute of Statistical Mathematics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2024-03-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annals of the Institute of Statistical Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10463-023-00892-4\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of the Institute of Statistical Mathematics","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10463-023-00892-4","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
Data segmentation for time series based on a general moving sum approach
We consider the multiple change point problem in a general framework based on estimating equations. This extends classical sample mean-based methodology to include robust methods but also different types of changes such as changes in linear regression or changes in count data including Poisson autoregressive time series. In this framework, we derive a general theory proving consistency for the number of change points and rates of convergence for the estimators of the locations of the change points. More precisely, two different types of MOSUM (moving sum) statistics are considered: A MOSUM-Wald statistic based on differences of local estimators and a MOSUM-score statistic based on a global inspection parameter. The latter is usually computationally less involved in particular in nonlinear problems where no closed form of the estimator is known such that numerical methods are required. Finally, we evaluate the methodology by some simulations as well as using geophysical well-log data.
期刊介绍:
Annals of the Institute of Statistical Mathematics (AISM) aims to provide a forum for open communication among statisticians, and to contribute to the advancement of statistics as a science to enable humans to handle information in order to cope with uncertainties. It publishes high-quality papers that shed new light on the theoretical, computational and/or methodological aspects of statistical science. Emphasis is placed on (a) development of new methodologies motivated by real data, (b) development of unifying theories, and (c) analysis and improvement of existing methodologies and theories.