{"title":"Multi-DGI:用于人类活动识别的多头汇集深度图 Infomax","authors":"Yifan Chen, Haiqi Zhu, Zhiyuan Chen","doi":"10.1007/s11036-024-02306-y","DOIUrl":null,"url":null,"abstract":"<p>Human Activity Recognition (HAR) is a crucial research domain with substantial real-world implications. Despite the extensive application of machine learning techniques in various domains, most traditional models neglect the inherent spatio-temporal relationships within time-series data. To address this limitation, we propose an unsupervised Graph Representation Learning (GRL) model named Multi-head Pooling Deep Graph Infomax (Multi-DGI), which is applied to reveal the spatio-temporal patterns from the graph-structured HAR data. By employing an adaptive Multi-head Pooling mechanism, Multi-DGI captures comprehensive graph summaries, furnishing general embeddings for downstream classifiers, thereby reducing dependence on graph constructions. Using the UCI WISDM dataset and three basic graph construction methods, Multi-DGI delivers a minimum enhancement of 2.9%, 1.0%, 7.5%, and 6.4% in Accuracy, Precision, Recall, and Macro-F1 scores, respectively. The demonstrated robustness of Multi-DGI in extracting intricate patterns from rudimentary graphs reduces the dependence of GRL on high-quality graphs, thereby broadening its applicability in time-series analysis. Our code and data are available at https://github.com/AnguoCYF/Multi-DGI.</p>","PeriodicalId":501103,"journal":{"name":"Mobile Networks and Applications","volume":"18 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multi-DGI: Multi-head Pooling Deep Graph Infomax for Human Activity Recognition\",\"authors\":\"Yifan Chen, Haiqi Zhu, Zhiyuan Chen\",\"doi\":\"10.1007/s11036-024-02306-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Human Activity Recognition (HAR) is a crucial research domain with substantial real-world implications. Despite the extensive application of machine learning techniques in various domains, most traditional models neglect the inherent spatio-temporal relationships within time-series data. To address this limitation, we propose an unsupervised Graph Representation Learning (GRL) model named Multi-head Pooling Deep Graph Infomax (Multi-DGI), which is applied to reveal the spatio-temporal patterns from the graph-structured HAR data. By employing an adaptive Multi-head Pooling mechanism, Multi-DGI captures comprehensive graph summaries, furnishing general embeddings for downstream classifiers, thereby reducing dependence on graph constructions. Using the UCI WISDM dataset and three basic graph construction methods, Multi-DGI delivers a minimum enhancement of 2.9%, 1.0%, 7.5%, and 6.4% in Accuracy, Precision, Recall, and Macro-F1 scores, respectively. The demonstrated robustness of Multi-DGI in extracting intricate patterns from rudimentary graphs reduces the dependence of GRL on high-quality graphs, thereby broadening its applicability in time-series analysis. Our code and data are available at https://github.com/AnguoCYF/Multi-DGI.</p>\",\"PeriodicalId\":501103,\"journal\":{\"name\":\"Mobile Networks and Applications\",\"volume\":\"18 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-03-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mobile Networks and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s11036-024-02306-y\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mobile Networks and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s11036-024-02306-y","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Multi-DGI: Multi-head Pooling Deep Graph Infomax for Human Activity Recognition
Human Activity Recognition (HAR) is a crucial research domain with substantial real-world implications. Despite the extensive application of machine learning techniques in various domains, most traditional models neglect the inherent spatio-temporal relationships within time-series data. To address this limitation, we propose an unsupervised Graph Representation Learning (GRL) model named Multi-head Pooling Deep Graph Infomax (Multi-DGI), which is applied to reveal the spatio-temporal patterns from the graph-structured HAR data. By employing an adaptive Multi-head Pooling mechanism, Multi-DGI captures comprehensive graph summaries, furnishing general embeddings for downstream classifiers, thereby reducing dependence on graph constructions. Using the UCI WISDM dataset and three basic graph construction methods, Multi-DGI delivers a minimum enhancement of 2.9%, 1.0%, 7.5%, and 6.4% in Accuracy, Precision, Recall, and Macro-F1 scores, respectively. The demonstrated robustness of Multi-DGI in extracting intricate patterns from rudimentary graphs reduces the dependence of GRL on high-quality graphs, thereby broadening its applicability in time-series analysis. Our code and data are available at https://github.com/AnguoCYF/Multi-DGI.