Ivan O’Neill, Aashrith Dayanand, Shane Keaveney, Kyriakos I. Kourousis
{"title":"粉末床熔融钢 316L 的拉伸各向异性:关于构建方向影响的实用研究","authors":"Ivan O’Neill, Aashrith Dayanand, Shane Keaveney, Kyriakos I. Kourousis","doi":"10.1177/14644207241238916","DOIUrl":null,"url":null,"abstract":"This study investigated the tensile anisotropy of steel 316L fabricated via laser powder bed fusion (L-PBF), built at different orientations. Tensile tests were performed on as-built L-PBF specimens produced at 0°, 15°, 30°, 45°, 60° and 90° angles. The yield strength, ultimate tensile strength and elasticity modulus experienced a decrease with an increasing build angle. Conversely, elongation at fracture increased as the build angle increased. The Elasticity modulus was found to be substantially lower than the nominal values reported in the material data sheet of the L-PBF equipment manufacturer. Fractography performed via Scanning Electron Microscopy (SEM) has found indications of porosity and lack of fusion that may have contributed to lower Elasticity modulus and an overall impacted mechanical performance. A complementary powder quality analysis has offered further insights on this and provided indications on the powder recycling impact.","PeriodicalId":20630,"journal":{"name":"Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications","volume":"8 1","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2024-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Tensile anisotropy of powder bed fusion steel 316L: A practical study on the effect of build orientation\",\"authors\":\"Ivan O’Neill, Aashrith Dayanand, Shane Keaveney, Kyriakos I. Kourousis\",\"doi\":\"10.1177/14644207241238916\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study investigated the tensile anisotropy of steel 316L fabricated via laser powder bed fusion (L-PBF), built at different orientations. Tensile tests were performed on as-built L-PBF specimens produced at 0°, 15°, 30°, 45°, 60° and 90° angles. The yield strength, ultimate tensile strength and elasticity modulus experienced a decrease with an increasing build angle. Conversely, elongation at fracture increased as the build angle increased. The Elasticity modulus was found to be substantially lower than the nominal values reported in the material data sheet of the L-PBF equipment manufacturer. Fractography performed via Scanning Electron Microscopy (SEM) has found indications of porosity and lack of fusion that may have contributed to lower Elasticity modulus and an overall impacted mechanical performance. A complementary powder quality analysis has offered further insights on this and provided indications on the powder recycling impact.\",\"PeriodicalId\":20630,\"journal\":{\"name\":\"Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications\",\"volume\":\"8 1\",\"pages\":\"\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2024-03-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1177/14644207241238916\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1177/14644207241238916","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Tensile anisotropy of powder bed fusion steel 316L: A practical study on the effect of build orientation
This study investigated the tensile anisotropy of steel 316L fabricated via laser powder bed fusion (L-PBF), built at different orientations. Tensile tests were performed on as-built L-PBF specimens produced at 0°, 15°, 30°, 45°, 60° and 90° angles. The yield strength, ultimate tensile strength and elasticity modulus experienced a decrease with an increasing build angle. Conversely, elongation at fracture increased as the build angle increased. The Elasticity modulus was found to be substantially lower than the nominal values reported in the material data sheet of the L-PBF equipment manufacturer. Fractography performed via Scanning Electron Microscopy (SEM) has found indications of porosity and lack of fusion that may have contributed to lower Elasticity modulus and an overall impacted mechanical performance. A complementary powder quality analysis has offered further insights on this and provided indications on the powder recycling impact.
期刊介绍:
The Journal of Materials: Design and Applications covers the usage and design of materials for application in an engineering context. The materials covered include metals, ceramics, and composites, as well as engineering polymers.
"The Journal of Materials Design and Applications is dedicated to publishing papers of the highest quality, in a timely fashion, covering a variety of important areas in materials technology. The Journal''s publishers have a wealth of publishing expertise and ensure that authors are given exemplary service. Every attention is given to publishing the papers as quickly as possible. The Journal has an excellent international reputation, with a corresponding international Editorial Board from a large number of different materials areas and disciplines advising the Editor." Professor Bill Banks - University of Strathclyde, UK
This journal is a member of the Committee on Publication Ethics (COPE).