Pauline Okemo , Upendra Wijesundra , Upuli Nakandala , Natalie Dillon , Rahul Chandora , Bradley Campbell , Millicent Smith , Craig Hardner , Charles A. Cadorna , Guillaume Martin , Nabila Yahiaoui , Olivier Garsmeur , Nicolas Pompidor , Angelique D'Hont , Robert J. Henry
{"title":"亚太地区的作物驯化:综述","authors":"Pauline Okemo , Upendra Wijesundra , Upuli Nakandala , Natalie Dillon , Rahul Chandora , Bradley Campbell , Millicent Smith , Craig Hardner , Charles A. Cadorna , Guillaume Martin , Nabila Yahiaoui , Olivier Garsmeur , Nicolas Pompidor , Angelique D'Hont , Robert J. Henry","doi":"10.1016/j.agrcom.2024.100032","DOIUrl":null,"url":null,"abstract":"<div><p>Understanding crop domestication provides a basis for ongoing genetic improvement of crops, especially in the utilization of wild crop relatives as a source of new variation and may guide the domestication of new crops. The Asia Pacific region is home to most of the world's human population and is a region in which many important crops were domesticated. Here we review the domestication of banana, citrus, coconut, macadamia, mango, millet, mungbean, rice, sugarcane and taro in the Asia Pacific region. These examples illustrate the importance of this region in the development of agriculture. The challenges of conservation of the genetic resources for these crops are exacerbated by the large human population and rapid economic development in the region. Advances in genetic technologies provide an opportunity for accelerated genetic improvement of these crops and the domestication of new crops.</p></div>","PeriodicalId":100065,"journal":{"name":"Agriculture Communications","volume":"2 1","pages":"Article 100032"},"PeriodicalIF":0.0000,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2949798124000085/pdfft?md5=0cd65b65d6eda001f404d14d3ba62080&pid=1-s2.0-S2949798124000085-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Crop domestication in the Asia Pacific Region: A review\",\"authors\":\"Pauline Okemo , Upendra Wijesundra , Upuli Nakandala , Natalie Dillon , Rahul Chandora , Bradley Campbell , Millicent Smith , Craig Hardner , Charles A. Cadorna , Guillaume Martin , Nabila Yahiaoui , Olivier Garsmeur , Nicolas Pompidor , Angelique D'Hont , Robert J. Henry\",\"doi\":\"10.1016/j.agrcom.2024.100032\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Understanding crop domestication provides a basis for ongoing genetic improvement of crops, especially in the utilization of wild crop relatives as a source of new variation and may guide the domestication of new crops. The Asia Pacific region is home to most of the world's human population and is a region in which many important crops were domesticated. Here we review the domestication of banana, citrus, coconut, macadamia, mango, millet, mungbean, rice, sugarcane and taro in the Asia Pacific region. These examples illustrate the importance of this region in the development of agriculture. The challenges of conservation of the genetic resources for these crops are exacerbated by the large human population and rapid economic development in the region. Advances in genetic technologies provide an opportunity for accelerated genetic improvement of these crops and the domestication of new crops.</p></div>\",\"PeriodicalId\":100065,\"journal\":{\"name\":\"Agriculture Communications\",\"volume\":\"2 1\",\"pages\":\"Article 100032\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2949798124000085/pdfft?md5=0cd65b65d6eda001f404d14d3ba62080&pid=1-s2.0-S2949798124000085-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Agriculture Communications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2949798124000085\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Agriculture Communications","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2949798124000085","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Crop domestication in the Asia Pacific Region: A review
Understanding crop domestication provides a basis for ongoing genetic improvement of crops, especially in the utilization of wild crop relatives as a source of new variation and may guide the domestication of new crops. The Asia Pacific region is home to most of the world's human population and is a region in which many important crops were domesticated. Here we review the domestication of banana, citrus, coconut, macadamia, mango, millet, mungbean, rice, sugarcane and taro in the Asia Pacific region. These examples illustrate the importance of this region in the development of agriculture. The challenges of conservation of the genetic resources for these crops are exacerbated by the large human population and rapid economic development in the region. Advances in genetic technologies provide an opportunity for accelerated genetic improvement of these crops and the domestication of new crops.