使用最优子树修剪和重植的中位四叉树搜索算法。

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Shayesteh Arasti, Siavash Mirarab
{"title":"使用最优子树修剪和重植的中位四叉树搜索算法。","authors":"Shayesteh Arasti, Siavash Mirarab","doi":"10.1186/s13015-024-00257-3","DOIUrl":null,"url":null,"abstract":"<p><p>Gene trees can be different from the species tree due to biological processes and inference errors. One way to obtain a species tree is to find one that maximizes some measure of similarity to a set of gene trees. The number of shared quartets between a potential species tree and gene trees provides a statistically justifiable score; if maximized properly, it could result in a statistically consistent estimator of the species tree under several statistical models of discordance. However, finding the median quartet score tree, one that maximizes this score, is NP-Hard, motivating several existing heuristic algorithms. These heuristics do not follow the hill-climbing paradigm used extensively in phylogenetics. In this paper, we make theoretical contributions that enable an efficient hill-climbing approach. Specifically, we show that a subtree of size m can be placed optimally on a tree of size n in quasi-linear time with respect to n and (almost) independently of m. This result enables us to perform subtree prune and regraft (SPR) rearrangements as part of a hill-climbing search. We show that this approach can slightly improve upon the results of widely-used methods such as ASTRAL in terms of the optimization score but not necessarily accuracy.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10938725/pdf/","citationCount":"0","resultStr":"{\"title\":\"Median quartet tree search algorithms using optimal subtree prune and regraft.\",\"authors\":\"Shayesteh Arasti, Siavash Mirarab\",\"doi\":\"10.1186/s13015-024-00257-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Gene trees can be different from the species tree due to biological processes and inference errors. One way to obtain a species tree is to find one that maximizes some measure of similarity to a set of gene trees. The number of shared quartets between a potential species tree and gene trees provides a statistically justifiable score; if maximized properly, it could result in a statistically consistent estimator of the species tree under several statistical models of discordance. However, finding the median quartet score tree, one that maximizes this score, is NP-Hard, motivating several existing heuristic algorithms. These heuristics do not follow the hill-climbing paradigm used extensively in phylogenetics. In this paper, we make theoretical contributions that enable an efficient hill-climbing approach. Specifically, we show that a subtree of size m can be placed optimally on a tree of size n in quasi-linear time with respect to n and (almost) independently of m. This result enables us to perform subtree prune and regraft (SPR) rearrangements as part of a hill-climbing search. We show that this approach can slightly improve upon the results of widely-used methods such as ASTRAL in terms of the optimization score but not necessarily accuracy.</p>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-03-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10938725/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1186/s13015-024-00257-3\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s13015-024-00257-3","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

由于生物过程和推断错误,基因树可能与物种树不同。获得物种树的一种方法是找到一棵与一组基因树相似度最大的树。潜在的物种树与基因树之间共享四分位点的数量提供了一个统计上合理的分数;如果正确地最大化,在几种不一致的统计模型下,它可以产生一个统计上一致的物种树估计值。然而,寻找中位四分树,即最大化该分数的树,是一个 NP-困难的问题,这也是现有几种启发式算法的动机。这些启发式算法并不遵循系统发生学中广泛使用的爬山模式。在本文中,我们的理论贡献使得高效的爬坡方法成为可能。具体来说,我们证明了大小为 m 的子树可以在与 n 有关的准线性时间内以最佳方式放置在大小为 n 的树上,并且(几乎)与 m 无关。这一结果使我们能够在爬山搜索中执行子树修剪和重植(SPR)重新排列。我们的研究表明,与 ASTRAL 等广泛使用的方法相比,这种方法能在优化得分方面略有提高,但不一定能提高准确性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Median quartet tree search algorithms using optimal subtree prune and regraft.

Gene trees can be different from the species tree due to biological processes and inference errors. One way to obtain a species tree is to find one that maximizes some measure of similarity to a set of gene trees. The number of shared quartets between a potential species tree and gene trees provides a statistically justifiable score; if maximized properly, it could result in a statistically consistent estimator of the species tree under several statistical models of discordance. However, finding the median quartet score tree, one that maximizes this score, is NP-Hard, motivating several existing heuristic algorithms. These heuristics do not follow the hill-climbing paradigm used extensively in phylogenetics. In this paper, we make theoretical contributions that enable an efficient hill-climbing approach. Specifically, we show that a subtree of size m can be placed optimally on a tree of size n in quasi-linear time with respect to n and (almost) independently of m. This result enables us to perform subtree prune and regraft (SPR) rearrangements as part of a hill-climbing search. We show that this approach can slightly improve upon the results of widely-used methods such as ASTRAL in terms of the optimization score but not necessarily accuracy.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信