{"title":"咖啡酸苯乙酯通过抑制 CDK1 和 AKT 抑制雄激素受体变体 7 的表达。","authors":"Ying-Yu Kuo, Chieh Huo, Chia-Yang Li, Chih-Pin Chuu","doi":"10.1038/s41417-024-00753-z","DOIUrl":null,"url":null,"abstract":"Androgen receptor (AR) splice variant 7 (AR-V7) is capable to enter nucleus and activate downstream signaling without ligand. AR-V7 assists the tumor growth, cancer metastasis, cancer stemness, and the evolvement of therapy-resistant prostate cancer (PCa). We discovered that caffeic acid phenethyl ester (CAPE) can repress the expression and downstream signaling of AR-V7 in PCa cells. CAPE blocked the gene transcription, nuclear localization, and protein abundance of AR-V7. CAPE inhibited the expression of U2AF65, SF2 and hnRNPF, which were splicing factors for AR-V7 intron. Additionally, CAPE decreased protein stability of AR-V7 and enhanced the proteosome-degradation of AR-V7. We observed that CDK1 and AKT regulated the expression and stability of AR-V7 via phosphorylation of Ser81 and Ser213, respectively. CAPE decreased the expression of CDK1 and AKT. Overexpression of CDK1 restored the abundance of AR-V7 in CAPE-treated PCa cells. Overexpression of AR-V7, AKT or CDK1 rescued the proliferation of PCa cells under CAPE treatment. Intraperitoneal injection of 10 mg/kg CAPE retarded the growth of 22Rv1 xenografts in nude mice and suppressed the protein levels of AR-V7, CDK1 and AKT in 22Rv1 xenografts. Our study provided the rationale of applying CAPE for inhibition of AR-V7 in prostate tumors.","PeriodicalId":9577,"journal":{"name":"Cancer gene therapy","volume":"31 6","pages":"807-815"},"PeriodicalIF":4.8000,"publicationDate":"2024-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Caffeic acid phenethyl ester suppresses the expression of androgen receptor variant 7 via inhibition of CDK1 and AKT\",\"authors\":\"Ying-Yu Kuo, Chieh Huo, Chia-Yang Li, Chih-Pin Chuu\",\"doi\":\"10.1038/s41417-024-00753-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Androgen receptor (AR) splice variant 7 (AR-V7) is capable to enter nucleus and activate downstream signaling without ligand. AR-V7 assists the tumor growth, cancer metastasis, cancer stemness, and the evolvement of therapy-resistant prostate cancer (PCa). We discovered that caffeic acid phenethyl ester (CAPE) can repress the expression and downstream signaling of AR-V7 in PCa cells. CAPE blocked the gene transcription, nuclear localization, and protein abundance of AR-V7. CAPE inhibited the expression of U2AF65, SF2 and hnRNPF, which were splicing factors for AR-V7 intron. Additionally, CAPE decreased protein stability of AR-V7 and enhanced the proteosome-degradation of AR-V7. We observed that CDK1 and AKT regulated the expression and stability of AR-V7 via phosphorylation of Ser81 and Ser213, respectively. CAPE decreased the expression of CDK1 and AKT. Overexpression of CDK1 restored the abundance of AR-V7 in CAPE-treated PCa cells. Overexpression of AR-V7, AKT or CDK1 rescued the proliferation of PCa cells under CAPE treatment. Intraperitoneal injection of 10 mg/kg CAPE retarded the growth of 22Rv1 xenografts in nude mice and suppressed the protein levels of AR-V7, CDK1 and AKT in 22Rv1 xenografts. Our study provided the rationale of applying CAPE for inhibition of AR-V7 in prostate tumors.\",\"PeriodicalId\":9577,\"journal\":{\"name\":\"Cancer gene therapy\",\"volume\":\"31 6\",\"pages\":\"807-815\"},\"PeriodicalIF\":4.8000,\"publicationDate\":\"2024-03-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cancer gene therapy\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.nature.com/articles/s41417-024-00753-z\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cancer gene therapy","FirstCategoryId":"3","ListUrlMain":"https://www.nature.com/articles/s41417-024-00753-z","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
Caffeic acid phenethyl ester suppresses the expression of androgen receptor variant 7 via inhibition of CDK1 and AKT
Androgen receptor (AR) splice variant 7 (AR-V7) is capable to enter nucleus and activate downstream signaling without ligand. AR-V7 assists the tumor growth, cancer metastasis, cancer stemness, and the evolvement of therapy-resistant prostate cancer (PCa). We discovered that caffeic acid phenethyl ester (CAPE) can repress the expression and downstream signaling of AR-V7 in PCa cells. CAPE blocked the gene transcription, nuclear localization, and protein abundance of AR-V7. CAPE inhibited the expression of U2AF65, SF2 and hnRNPF, which were splicing factors for AR-V7 intron. Additionally, CAPE decreased protein stability of AR-V7 and enhanced the proteosome-degradation of AR-V7. We observed that CDK1 and AKT regulated the expression and stability of AR-V7 via phosphorylation of Ser81 and Ser213, respectively. CAPE decreased the expression of CDK1 and AKT. Overexpression of CDK1 restored the abundance of AR-V7 in CAPE-treated PCa cells. Overexpression of AR-V7, AKT or CDK1 rescued the proliferation of PCa cells under CAPE treatment. Intraperitoneal injection of 10 mg/kg CAPE retarded the growth of 22Rv1 xenografts in nude mice and suppressed the protein levels of AR-V7, CDK1 and AKT in 22Rv1 xenografts. Our study provided the rationale of applying CAPE for inhibition of AR-V7 in prostate tumors.
期刊介绍:
Cancer Gene Therapy is the essential gene and cellular therapy resource for cancer researchers and clinicians, keeping readers up to date with the latest developments in gene and cellular therapies for cancer. The journal publishes original laboratory and clinical research papers, case reports and review articles. Publication topics include RNAi approaches, drug resistance, hematopoietic progenitor cell gene transfer, cancer stem cells, cellular therapies, homologous recombination, ribozyme technology, antisense technology, tumor immunotherapy and tumor suppressors, translational research, cancer therapy, gene delivery systems (viral and non-viral), anti-gene therapy (antisense, siRNA & ribozymes), apoptosis; mechanisms and therapies, vaccine development, immunology and immunotherapy, DNA synthesis and repair.
Cancer Gene Therapy publishes the results of laboratory investigations, preclinical studies, and clinical trials in the field of gene transfer/gene therapy and cellular therapies as applied to cancer research. Types of articles published include original research articles; case reports; brief communications; review articles in the main fields of drug resistance/sensitivity, gene therapy, cellular therapy, tumor suppressor and anti-oncogene therapy, cytokine/tumor immunotherapy, etc.; industry perspectives; and letters to the editor.