完整的实卡勒子漫游

Pub Date : 2024-03-12 DOI:10.1002/mana.202300369
A. de Carvalho
{"title":"完整的实卡勒子漫游","authors":"A. de Carvalho","doi":"10.1002/mana.202300369","DOIUrl":null,"url":null,"abstract":"<p>Let <span></span><math>\n <semantics>\n <mrow>\n <mi>f</mi>\n <mo>:</mo>\n <msup>\n <mi>M</mi>\n <mrow>\n <mn>2</mn>\n <mi>n</mi>\n </mrow>\n </msup>\n <mo>→</mo>\n <msup>\n <mi>R</mi>\n <mrow>\n <mn>2</mn>\n <mi>n</mi>\n <mo>+</mo>\n <mi>p</mi>\n </mrow>\n </msup>\n </mrow>\n <annotation>$f: M^{2n}\\rightarrow \\mathbb {R}^{2n+p}$</annotation>\n </semantics></math> denote an isometric immersion of a Kähler manifold with complex dimension <span></span><math>\n <semantics>\n <mrow>\n <mi>n</mi>\n <mo>≥</mo>\n <mn>2</mn>\n </mrow>\n <annotation>$n\\ge 2$</annotation>\n </semantics></math> into Euclidean space with codimension <span></span><math>\n <semantics>\n <mi>p</mi>\n <annotation>$p$</annotation>\n </semantics></math>. We show that generic rank conditions on the second fundamental form of a non-minimal complete real Kähler submanifold <span></span><math>\n <semantics>\n <mi>f</mi>\n <annotation>$f$</annotation>\n </semantics></math> imply that <span></span><math>\n <semantics>\n <mi>f</mi>\n <annotation>$f$</annotation>\n </semantics></math> is a cylinder over a real Kähler submanifold <span></span><math>\n <semantics>\n <mrow>\n <mi>g</mi>\n <mo>:</mo>\n <msup>\n <mi>N</mi>\n <mrow>\n <mn>2</mn>\n <mi>p</mi>\n </mrow>\n </msup>\n <mo>→</mo>\n <msup>\n <mi>R</mi>\n <mrow>\n <mn>2</mn>\n <mi>p</mi>\n <mo>+</mo>\n <mi>p</mi>\n </mrow>\n </msup>\n </mrow>\n <annotation>$g: N^{2p}\\rightarrow \\mathbb {R}^{2p+p}$</annotation>\n </semantics></math>.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Complete real Kähler submanifolds\",\"authors\":\"A. de Carvalho\",\"doi\":\"10.1002/mana.202300369\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Let <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>f</mi>\\n <mo>:</mo>\\n <msup>\\n <mi>M</mi>\\n <mrow>\\n <mn>2</mn>\\n <mi>n</mi>\\n </mrow>\\n </msup>\\n <mo>→</mo>\\n <msup>\\n <mi>R</mi>\\n <mrow>\\n <mn>2</mn>\\n <mi>n</mi>\\n <mo>+</mo>\\n <mi>p</mi>\\n </mrow>\\n </msup>\\n </mrow>\\n <annotation>$f: M^{2n}\\\\rightarrow \\\\mathbb {R}^{2n+p}$</annotation>\\n </semantics></math> denote an isometric immersion of a Kähler manifold with complex dimension <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>n</mi>\\n <mo>≥</mo>\\n <mn>2</mn>\\n </mrow>\\n <annotation>$n\\\\ge 2$</annotation>\\n </semantics></math> into Euclidean space with codimension <span></span><math>\\n <semantics>\\n <mi>p</mi>\\n <annotation>$p$</annotation>\\n </semantics></math>. We show that generic rank conditions on the second fundamental form of a non-minimal complete real Kähler submanifold <span></span><math>\\n <semantics>\\n <mi>f</mi>\\n <annotation>$f$</annotation>\\n </semantics></math> imply that <span></span><math>\\n <semantics>\\n <mi>f</mi>\\n <annotation>$f$</annotation>\\n </semantics></math> is a cylinder over a real Kähler submanifold <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>g</mi>\\n <mo>:</mo>\\n <msup>\\n <mi>N</mi>\\n <mrow>\\n <mn>2</mn>\\n <mi>p</mi>\\n </mrow>\\n </msup>\\n <mo>→</mo>\\n <msup>\\n <mi>R</mi>\\n <mrow>\\n <mn>2</mn>\\n <mi>p</mi>\\n <mo>+</mo>\\n <mi>p</mi>\\n </mrow>\\n </msup>\\n </mrow>\\n <annotation>$g: N^{2p}\\\\rightarrow \\\\mathbb {R}^{2p+p}$</annotation>\\n </semantics></math>.</p>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-03-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/mana.202300369\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/mana.202300369","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

让 f:M2n→R2n+p$f:M^{2n}\rightarrow \mathbb {R}^{2n+p}$ 表示复维度 n≥2$n\ge 2$ 的凯勒流形等距浸入标度 p$p$ 的欧几里得空间。我们证明,关于非最小完整实凯勒子流形 f$f$ 的第二基本形式的一般秩条件意味着 f$f$ 是实凯勒子流形 g:N2p→R2p+p$g 上的圆柱体:N^{2p}\rightarrow \mathbb {R}^{2p+p}$.
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Complete real Kähler submanifolds

Let f : M 2 n R 2 n + p $f: M^{2n}\rightarrow \mathbb {R}^{2n+p}$ denote an isometric immersion of a Kähler manifold with complex dimension n 2 $n\ge 2$ into Euclidean space with codimension p $p$ . We show that generic rank conditions on the second fundamental form of a non-minimal complete real Kähler submanifold f $f$ imply that f $f$ is a cylinder over a real Kähler submanifold g : N 2 p R 2 p + p $g: N^{2p}\rightarrow \mathbb {R}^{2p+p}$ .

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信