麦卡锡-伯格曼迪里希勒数列空间上合成算子线性组合的复对称性

IF 0.7 4区 数学 Q2 MATHEMATICS
Cheng-shi Huang, Zhi-jie Jiang
{"title":"麦卡锡-伯格曼迪里希勒数列空间上合成算子线性组合的复对称性","authors":"Cheng-shi Huang, Zhi-jie Jiang","doi":"10.1007/s11785-024-01489-2","DOIUrl":null,"url":null,"abstract":"<p>The complex symmetric linear combinations of composition operators on the McCarthy–Bergman spaces of Dirichlet series are completely characterized. The normality and self-adjointness of complex symmetric linear combinations of composition operators on such spaces are also characterized. Some images are given in order to find some interesting phenomena of <span>\\({\\mathcal {J}}\\)</span>-symmetric such combinations.</p>","PeriodicalId":50654,"journal":{"name":"Complex Analysis and Operator Theory","volume":"39 1","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2024-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Complex Symmetry of Linear Combinations of Composition Operators on the McCarthy–Bergman Space of Dirichlet Series\",\"authors\":\"Cheng-shi Huang, Zhi-jie Jiang\",\"doi\":\"10.1007/s11785-024-01489-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The complex symmetric linear combinations of composition operators on the McCarthy–Bergman spaces of Dirichlet series are completely characterized. The normality and self-adjointness of complex symmetric linear combinations of composition operators on such spaces are also characterized. Some images are given in order to find some interesting phenomena of <span>\\\\({\\\\mathcal {J}}\\\\)</span>-symmetric such combinations.</p>\",\"PeriodicalId\":50654,\"journal\":{\"name\":\"Complex Analysis and Operator Theory\",\"volume\":\"39 1\",\"pages\":\"\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2024-03-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Complex Analysis and Operator Theory\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s11785-024-01489-2\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Complex Analysis and Operator Theory","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s11785-024-01489-2","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

完全表征了 Dirichlet 级数的 McCarthy-Bergman 空间上组成算子的复杂对称线性组合。同时还表征了这类空间上组成算子的复对称线性组合的正态性和自相接性。给出了一些图像以发现此类对称组合的一些有趣现象。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Complex Symmetry of Linear Combinations of Composition Operators on the McCarthy–Bergman Space of Dirichlet Series

Complex Symmetry of Linear Combinations of Composition Operators on the McCarthy–Bergman Space of Dirichlet Series

The complex symmetric linear combinations of composition operators on the McCarthy–Bergman spaces of Dirichlet series are completely characterized. The normality and self-adjointness of complex symmetric linear combinations of composition operators on such spaces are also characterized. Some images are given in order to find some interesting phenomena of \({\mathcal {J}}\)-symmetric such combinations.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.20
自引率
12.50%
发文量
107
审稿时长
3 months
期刊介绍: Complex Analysis and Operator Theory (CAOT) is devoted to the publication of current research developments in the closely related fields of complex analysis and operator theory as well as in applications to system theory, harmonic analysis, probability, statistics, learning theory, mathematical physics and other related fields. Articles using the theory of reproducing kernel spaces are in particular welcomed.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信