{"title":"清洁能源催化剂:二氧化碳催化回收二甲醚研究进展综述","authors":"","doi":"10.1007/s11244-024-01913-z","DOIUrl":null,"url":null,"abstract":"<h3>Abstract</h3> <p>Dimethyl ether (DME), one of the proposed targets for CO<sub>2</sub> recycling, is a very attractive renewable energy source due to its non-toxic nature, low environmental impact, and hydrogen (H<sub>2</sub>)-carrying abilities. The thermal catalyzed reaction of CO<sub>2</sub> to DME requires two steps with different catalysts, and the combination and optimization of these catalysts are of great importance for achieving viable DME yield that would make future industrial implementation possible. The thermodynamics and reaction mechanisms of the CO<sub>2</sub> conversion to DME were discussed. The metallic and acidic catalyst functions utilized for this reaction are analyzed in this review, and the different methods of combination are presented with a focus on hybrid catalysts to achieve successful and efficient catalyzed reactions with optimized DME yield. Additionally, an outlook for future directions in catalyst development and mechanistic understanding in this largely overlooked area are provided.</p>","PeriodicalId":801,"journal":{"name":"Topics in Catalysis","volume":"14 1","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2024-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Catalysts for Clean Energy: A Review on Current Progress for the Catalyzed Recycling of CO2 into Dimethyl Ether\",\"authors\":\"\",\"doi\":\"10.1007/s11244-024-01913-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<h3>Abstract</h3> <p>Dimethyl ether (DME), one of the proposed targets for CO<sub>2</sub> recycling, is a very attractive renewable energy source due to its non-toxic nature, low environmental impact, and hydrogen (H<sub>2</sub>)-carrying abilities. The thermal catalyzed reaction of CO<sub>2</sub> to DME requires two steps with different catalysts, and the combination and optimization of these catalysts are of great importance for achieving viable DME yield that would make future industrial implementation possible. The thermodynamics and reaction mechanisms of the CO<sub>2</sub> conversion to DME were discussed. The metallic and acidic catalyst functions utilized for this reaction are analyzed in this review, and the different methods of combination are presented with a focus on hybrid catalysts to achieve successful and efficient catalyzed reactions with optimized DME yield. Additionally, an outlook for future directions in catalyst development and mechanistic understanding in this largely overlooked area are provided.</p>\",\"PeriodicalId\":801,\"journal\":{\"name\":\"Topics in Catalysis\",\"volume\":\"14 1\",\"pages\":\"\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2024-03-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Topics in Catalysis\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1007/s11244-024-01913-z\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Topics in Catalysis","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1007/s11244-024-01913-z","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
Catalysts for Clean Energy: A Review on Current Progress for the Catalyzed Recycling of CO2 into Dimethyl Ether
Abstract
Dimethyl ether (DME), one of the proposed targets for CO2 recycling, is a very attractive renewable energy source due to its non-toxic nature, low environmental impact, and hydrogen (H2)-carrying abilities. The thermal catalyzed reaction of CO2 to DME requires two steps with different catalysts, and the combination and optimization of these catalysts are of great importance for achieving viable DME yield that would make future industrial implementation possible. The thermodynamics and reaction mechanisms of the CO2 conversion to DME were discussed. The metallic and acidic catalyst functions utilized for this reaction are analyzed in this review, and the different methods of combination are presented with a focus on hybrid catalysts to achieve successful and efficient catalyzed reactions with optimized DME yield. Additionally, an outlook for future directions in catalyst development and mechanistic understanding in this largely overlooked area are provided.
期刊介绍:
Topics in Catalysis publishes topical collections in all fields of catalysis which are composed only of invited articles from leading authors. The journal documents today’s emerging and critical trends in all branches of catalysis. Each themed issue is organized by renowned Guest Editors in collaboration with the Editors-in-Chief. Proposals for new topics are welcome and should be submitted directly to the Editors-in-Chief.
The publication of individual uninvited original research articles can be sent to our sister journal Catalysis Letters. This journal aims for rapid publication of high-impact original research articles in all fields of both applied and theoretical catalysis, including heterogeneous, homogeneous and biocatalysis.