单位球上的矢量值伯格曼-奥立兹空间和矢量值伯格曼-奥立兹空间之间的小汉克尔算子的对偶性

IF 0.6 3区 数学 Q3 MATHEMATICS
D. Békollè, T. Mfouapon, E. L. Tchoundja
{"title":"单位球上的矢量值伯格曼-奥立兹空间和矢量值伯格曼-奥立兹空间之间的小汉克尔算子的对偶性","authors":"D. Békollè,&nbsp;T. Mfouapon,&nbsp;E. L. Tchoundja","doi":"10.1007/s10476-024-00002-3","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, we consider vector-valued Bergman–Orlicz spaces which are generalization of classical vector-valued Bergman spaces. We characterize the dual space of vector-valued Bergman–Orlicz space, and study the boundedness of the little Hankel operators, \n<span>\\(h_b\\)</span>, with operator-valued symbols <i>b</i>, between different weighted vector-valued Bergman–Orlicz spaces on the unit ball <span>\\(\\mathbb{B}_n\\)</span>.More precisely, given two complex Banach spaces <i>X</i>, <i>Y</i>, we characterize those operator-valued symbols<span>\\(b \\colon \\mathbb{B}_n\\rightarrow \\mathcal{L} (\\overline{X},Y) \\)</span> for which the little Hankel operator <span>\\(h_{b}: A^{\\Phi_{1}}_{\\alpha}(\\mathbb{B}_{n},X) \\longrightarrow A^{\\Phi_{2}}_{\\alpha}(\\mathbb{B}_{n},Y)\\)</span>, extends into a bounded operator, where <span>\\(\\Phi_{1}\\)</span> and <span>\\(\\Phi_2\\)</span> are either convex or concave growth functions.</p></div>","PeriodicalId":55518,"journal":{"name":"Analysis Mathematica","volume":null,"pages":null},"PeriodicalIF":0.6000,"publicationDate":"2024-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Duality for vector-valued Bergman–Orlicz spaces and little Hankel operators between vector-valued Bergman–Orlicz spaces on the unit ball\",\"authors\":\"D. Békollè,&nbsp;T. Mfouapon,&nbsp;E. L. Tchoundja\",\"doi\":\"10.1007/s10476-024-00002-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this paper, we consider vector-valued Bergman–Orlicz spaces which are generalization of classical vector-valued Bergman spaces. We characterize the dual space of vector-valued Bergman–Orlicz space, and study the boundedness of the little Hankel operators, \\n<span>\\\\(h_b\\\\)</span>, with operator-valued symbols <i>b</i>, between different weighted vector-valued Bergman–Orlicz spaces on the unit ball <span>\\\\(\\\\mathbb{B}_n\\\\)</span>.More precisely, given two complex Banach spaces <i>X</i>, <i>Y</i>, we characterize those operator-valued symbols<span>\\\\(b \\\\colon \\\\mathbb{B}_n\\\\rightarrow \\\\mathcal{L} (\\\\overline{X},Y) \\\\)</span> for which the little Hankel operator <span>\\\\(h_{b}: A^{\\\\Phi_{1}}_{\\\\alpha}(\\\\mathbb{B}_{n},X) \\\\longrightarrow A^{\\\\Phi_{2}}_{\\\\alpha}(\\\\mathbb{B}_{n},Y)\\\\)</span>, extends into a bounded operator, where <span>\\\\(\\\\Phi_{1}\\\\)</span> and <span>\\\\(\\\\Phi_2\\\\)</span> are either convex or concave growth functions.</p></div>\",\"PeriodicalId\":55518,\"journal\":{\"name\":\"Analysis Mathematica\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2024-03-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Analysis Mathematica\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10476-024-00002-3\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analysis Mathematica","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10476-024-00002-3","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

摘要 本文考虑了向量值伯格曼-奥利兹空间,它是经典向量值伯格曼空间的广义化。我们描述了矢量值伯格曼-奥利兹空间的对偶空间,并研究了单位球 \(\mathbb{B}_n\) 上不同加权矢量值伯格曼-奥利兹空间之间带有算子值符号 b 的小汉克尔算子 \(h_b\) 的有界性。更确切地说,给定两个复杂的巴纳赫空间 X、Y,我们将描述那些算子值符号 \(b \colon \mathbb{B}_n\rightarrow \mathcal{L} (\overline{X},Y) \),对于这些符号,小汉克尔算子 \(h_{b}:A^{\Phi_{1}}_{\alpha}(\mathbb{B}_{n},X) \longrightarrow A^{\Phi_{2}}_{\alpha}(\mathbb{B}_{n},Y)\)扩展为有界算子,其中 \(\Phi_{1}\) 和 \(\Phi_2\) 是凸或凹增长函数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Duality for vector-valued Bergman–Orlicz spaces and little Hankel operators between vector-valued Bergman–Orlicz spaces on the unit ball

In this paper, we consider vector-valued Bergman–Orlicz spaces which are generalization of classical vector-valued Bergman spaces. We characterize the dual space of vector-valued Bergman–Orlicz space, and study the boundedness of the little Hankel operators, \(h_b\), with operator-valued symbols b, between different weighted vector-valued Bergman–Orlicz spaces on the unit ball \(\mathbb{B}_n\).More precisely, given two complex Banach spaces X, Y, we characterize those operator-valued symbols\(b \colon \mathbb{B}_n\rightarrow \mathcal{L} (\overline{X},Y) \) for which the little Hankel operator \(h_{b}: A^{\Phi_{1}}_{\alpha}(\mathbb{B}_{n},X) \longrightarrow A^{\Phi_{2}}_{\alpha}(\mathbb{B}_{n},Y)\), extends into a bounded operator, where \(\Phi_{1}\) and \(\Phi_2\) are either convex or concave growth functions.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Analysis Mathematica
Analysis Mathematica MATHEMATICS-
CiteScore
1.00
自引率
14.30%
发文量
54
审稿时长
>12 weeks
期刊介绍: Traditionally the emphasis of Analysis Mathematica is classical analysis, including real functions (MSC 2010: 26xx), measure and integration (28xx), functions of a complex variable (30xx), special functions (33xx), sequences, series, summability (40xx), approximations and expansions (41xx). The scope also includes potential theory (31xx), several complex variables and analytic spaces (32xx), harmonic analysis on Euclidean spaces (42xx), abstract harmonic analysis (43xx). The journal willingly considers papers in difference and functional equations (39xx), functional analysis (46xx), operator theory (47xx), analysis on topological groups and metric spaces, matrix analysis, discrete versions of topics in analysis, convex and geometric analysis and the interplay between geometry and analysis.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信