印度煤矿致命事故的时间序列预测

IF 0.7 4区 工程技术 Q4 MINING & MINERAL PROCESSING
Abinash Mohanty, Devidas S. Nimaje
{"title":"印度煤矿致命事故的时间序列预测","authors":"Abinash Mohanty, Devidas S. Nimaje","doi":"10.1134/s1062739123060200","DOIUrl":null,"url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Abstract</h3><p>The present study analyzes the fatal accident occurrences of seventy years from 1951 to 2020 in Indian coal mines. The autoregressive integrated moving average (ARIMA) model, Brown’s double exponential smoothing method, Holt’s double exponential smoothing method, and neural network time series forecasting are used in this research to analyze fatal accidents and forecast future accident incidents. By analyzing various parameters of the applied models, the neural network model was found to be the most appropriate model for the collected data to forecast Indian coal mine accidents as it provides the least root mean squared error (RMSE) (17.62), and mean absolute error (MAE) (13.33) among all models. According to this study, the Neural Network model is the most suitable one to predict Indian coal mine fatality.</p>","PeriodicalId":16358,"journal":{"name":"Journal of Mining Science","volume":"109 1","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2024-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Time Series Forecasting of Indian Coal Mines Fatal Accidents\",\"authors\":\"Abinash Mohanty, Devidas S. Nimaje\",\"doi\":\"10.1134/s1062739123060200\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<h3 data-test=\\\"abstract-sub-heading\\\">Abstract</h3><p>The present study analyzes the fatal accident occurrences of seventy years from 1951 to 2020 in Indian coal mines. The autoregressive integrated moving average (ARIMA) model, Brown’s double exponential smoothing method, Holt’s double exponential smoothing method, and neural network time series forecasting are used in this research to analyze fatal accidents and forecast future accident incidents. By analyzing various parameters of the applied models, the neural network model was found to be the most appropriate model for the collected data to forecast Indian coal mine accidents as it provides the least root mean squared error (RMSE) (17.62), and mean absolute error (MAE) (13.33) among all models. According to this study, the Neural Network model is the most suitable one to predict Indian coal mine fatality.</p>\",\"PeriodicalId\":16358,\"journal\":{\"name\":\"Journal of Mining Science\",\"volume\":\"109 1\",\"pages\":\"\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2024-03-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Mining Science\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1134/s1062739123060200\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MINING & MINERAL PROCESSING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mining Science","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1134/s1062739123060200","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MINING & MINERAL PROCESSING","Score":null,"Total":0}
引用次数: 0

摘要

摘要 本研究分析了印度煤矿从 1951 年到 2020 年七十年间发生的致命事故。本研究采用了自回归综合移动平均(ARIMA)模型、布朗双指数平滑法、霍尔特双指数平滑法和神经网络时间序列预测法对死亡事故进行分析,并对未来事故进行预测。通过分析所应用模型的各种参数,发现神经网络模型是最适合所收集数据的模型,可用于预测印度煤矿事故,因为它在所有模型中提供了最小的均方根误差(RMSE)(17.62)和平均绝对误差(MAE)(13.33)。根据这项研究,神经网络模型是最适合预测印度煤矿死亡事故的模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Time Series Forecasting of Indian Coal Mines Fatal Accidents

Time Series Forecasting of Indian Coal Mines Fatal Accidents

Abstract

The present study analyzes the fatal accident occurrences of seventy years from 1951 to 2020 in Indian coal mines. The autoregressive integrated moving average (ARIMA) model, Brown’s double exponential smoothing method, Holt’s double exponential smoothing method, and neural network time series forecasting are used in this research to analyze fatal accidents and forecast future accident incidents. By analyzing various parameters of the applied models, the neural network model was found to be the most appropriate model for the collected data to forecast Indian coal mine accidents as it provides the least root mean squared error (RMSE) (17.62), and mean absolute error (MAE) (13.33) among all models. According to this study, the Neural Network model is the most suitable one to predict Indian coal mine fatality.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Mining Science
Journal of Mining Science 工程技术-矿业与矿物加工
CiteScore
1.70
自引率
25.00%
发文量
19
审稿时长
24 months
期刊介绍: The Journal reflects the current trends of development in fundamental and applied mining sciences. It publishes original articles on geomechanics and geoinformation science, investigation of relationships between global geodynamic processes and man-induced disasters, physical and mathematical modeling of rheological and wave processes in multiphase structural geological media, rock failure, analysis and synthesis of mechanisms, automatic machines, and robots, science of mining machines, creation of resource-saving and ecologically safe technologies of mineral mining, mine aerology and mine thermal physics, coal seam degassing, mechanisms for origination of spontaneous fires and methods for their extinction, mineral dressing, and bowel exploitation.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信