改善灌溉和地下水管理以减少二氧化碳排放:印度旁遮普邦的案例研究

IF 2.5 3区 环境科学与生态学 Q3 ENVIRONMENTAL SCIENCES
Sanjay Satpute, Mahesh Chand Singh
{"title":"改善灌溉和地下水管理以减少二氧化碳排放:印度旁遮普邦的案例研究","authors":"Sanjay Satpute, Mahesh Chand Singh","doi":"10.1007/s11027-024-10117-5","DOIUrl":null,"url":null,"abstract":"<p>The groundwater irrigation of high water requiring crops has started imposing negative impacts on environment in terms of increased energy requirement and depletion of green agriculture. Thus, shifting from gravity-fed (surface) irrigation to drip irrigation is a possible way of saving a substantial amount of water in relation to decreased groundwater pumping. Keeping this in view, the present study compared the change in crop water demand, energy consumption and CO<sub>2</sub> emission by shifting from gravity-fed/surface irrigation to drip irrigation. In the future, the potential area that can be brought under drip irrigation in the state would be about 26 times higher than that being irrigated using pressured irrigation at present. With the adoption of drip irrigation in groundwater irrigated areas, the crop water demand, energy consumption and CO<sub>2</sub> emission can be reduced by about 35–42%, 23–31%, and 23–31%, respectively, with water application efficiencies of 85 to 95%. In canal irrigated areas, if drip irrigation is adopted over gravity-fed irrigation, up to 32–39% water demand can be reduced, whereas the energy consumption and CO<sub>2</sub> emission would increase. Until, unless, water saving is not an issue in canal irrigated areas, gravity-fed irrigation methods may be adopted. Whereas in areas dominated with groundwater irrigation, pressurized irrigation methods particularly the drip system should be essentially adopted.</p>","PeriodicalId":54387,"journal":{"name":"Mitigation and Adaptation Strategies for Global Change","volume":null,"pages":null},"PeriodicalIF":2.5000,"publicationDate":"2024-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Improved irrigation and groundwater management for reducing CO2 emissions: a case study of Indian Punjab\",\"authors\":\"Sanjay Satpute, Mahesh Chand Singh\",\"doi\":\"10.1007/s11027-024-10117-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The groundwater irrigation of high water requiring crops has started imposing negative impacts on environment in terms of increased energy requirement and depletion of green agriculture. Thus, shifting from gravity-fed (surface) irrigation to drip irrigation is a possible way of saving a substantial amount of water in relation to decreased groundwater pumping. Keeping this in view, the present study compared the change in crop water demand, energy consumption and CO<sub>2</sub> emission by shifting from gravity-fed/surface irrigation to drip irrigation. In the future, the potential area that can be brought under drip irrigation in the state would be about 26 times higher than that being irrigated using pressured irrigation at present. With the adoption of drip irrigation in groundwater irrigated areas, the crop water demand, energy consumption and CO<sub>2</sub> emission can be reduced by about 35–42%, 23–31%, and 23–31%, respectively, with water application efficiencies of 85 to 95%. In canal irrigated areas, if drip irrigation is adopted over gravity-fed irrigation, up to 32–39% water demand can be reduced, whereas the energy consumption and CO<sub>2</sub> emission would increase. Until, unless, water saving is not an issue in canal irrigated areas, gravity-fed irrigation methods may be adopted. Whereas in areas dominated with groundwater irrigation, pressurized irrigation methods particularly the drip system should be essentially adopted.</p>\",\"PeriodicalId\":54387,\"journal\":{\"name\":\"Mitigation and Adaptation Strategies for Global Change\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2024-03-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mitigation and Adaptation Strategies for Global Change\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.1007/s11027-024-10117-5\",\"RegionNum\":3,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mitigation and Adaptation Strategies for Global Change","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1007/s11027-024-10117-5","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

用地下水灌溉需水量大的作物已开始对环境造成负面影响,如能源需求增加和绿色农业枯竭。因此,从重力灌溉(地表水)转向滴灌是减少地下水抽取量、节约大量用水的一种可行方法。有鉴于此,本研究比较了从重力灌溉/地表灌溉到滴灌对作物需水量、能耗和二氧化碳排放量的变化。未来,该州滴灌的潜在灌溉面积将是目前有压灌溉面积的 26 倍。在地下水灌区采用滴灌后,作物需水量、能耗和二氧化碳排放量可分别减少约 35%-42%、23%-31% 和 23%-31%,施水效率可达 85%-95%。在渠灌区,如果采用滴灌而不是重力灌溉,需水量最多可减少 32-39%,而能耗和二氧化碳排放量则会增加。除非运河灌溉区不存在节水问题,否则可以采用重力灌溉方法。而在以地下水灌溉为主的地区,应主要采用有压灌溉方法,尤其是滴灌系统。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Improved irrigation and groundwater management for reducing CO2 emissions: a case study of Indian Punjab

Improved irrigation and groundwater management for reducing CO2 emissions: a case study of Indian Punjab

The groundwater irrigation of high water requiring crops has started imposing negative impacts on environment in terms of increased energy requirement and depletion of green agriculture. Thus, shifting from gravity-fed (surface) irrigation to drip irrigation is a possible way of saving a substantial amount of water in relation to decreased groundwater pumping. Keeping this in view, the present study compared the change in crop water demand, energy consumption and CO2 emission by shifting from gravity-fed/surface irrigation to drip irrigation. In the future, the potential area that can be brought under drip irrigation in the state would be about 26 times higher than that being irrigated using pressured irrigation at present. With the adoption of drip irrigation in groundwater irrigated areas, the crop water demand, energy consumption and CO2 emission can be reduced by about 35–42%, 23–31%, and 23–31%, respectively, with water application efficiencies of 85 to 95%. In canal irrigated areas, if drip irrigation is adopted over gravity-fed irrigation, up to 32–39% water demand can be reduced, whereas the energy consumption and CO2 emission would increase. Until, unless, water saving is not an issue in canal irrigated areas, gravity-fed irrigation methods may be adopted. Whereas in areas dominated with groundwater irrigation, pressurized irrigation methods particularly the drip system should be essentially adopted.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
6.60
自引率
0.00%
发文量
50
审稿时长
3 months
期刊介绍: The Earth''s biosphere is being transformed by various anthropogenic activities. Mitigation and Adaptation Strategies for Global Change addresses a wide range of environment, economic and energy topics and timely issues including global climate change, stratospheric ozone depletion, acid deposition, eutrophication of terrestrial and aquatic ecosystems, species extinction and loss of biological diversity, deforestation and forest degradation, desertification, soil resource degradation, land-use change, sea level rise, destruction of coastal zones, depletion of fresh water and marine fisheries, loss of wetlands and riparian zones and hazardous waste management. Response options to mitigate these threats or to adapt to changing environs are needed to ensure a sustainable biosphere for all forms of life. To that end, Mitigation and Adaptation Strategies for Global Change provides a forum to encourage the conceptualization, critical examination and debate regarding response options. The aim of this journal is to provide a forum to review, analyze and stimulate the development, testing and implementation of mitigation and adaptation strategies at regional, national and global scales. One of the primary goals of this journal is to contribute to real-time policy analysis and development as national and international policies and agreements are discussed and promulgated.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信