带慢膜的选民模型

Pub Date : 2024-03-13 DOI:10.1007/s10959-024-01321-9
Linjie Zhao, Xiaofeng Xue
{"title":"带慢膜的选民模型","authors":"Linjie Zhao, Xiaofeng Xue","doi":"10.1007/s10959-024-01321-9","DOIUrl":null,"url":null,"abstract":"<p>We introduce the voter model on the infinite integer lattice with a slow membrane and investigate its hydrodynamic behavior and nonequilibrium fluctuations. The voter model is one of the classical interacting particle systems with state space <span>\\(\\{0,1\\}^{\\mathbb Z^d}\\)</span>. In our model, a voter adopts one of its neighbors’ opinion at rate one except for neighbors crossing the hyperplane <span>\\(\\{x:x_1 = 1/2\\}\\)</span>, where the rate is <span>\\(\\alpha N^{-\\beta }\\)</span> and thus is called a slow membrane. Above, <span>\\(\\alpha &gt;0 \\ \\textrm{and} \\ \\beta \\ge 0\\)</span> are given parameters and the positive integer <i>N</i> is a scaling parameter. We consider the limit <span>\\(N \\rightarrow \\infty \\)</span> and prove that the hydrodynamic limits are given by the heat equation without or with Robin/Neumann conditions depending on the values of <span>\\(\\beta \\)</span>. We also consider the nonequilibrium fluctuations, where the limit is described by generalized Ornstein–Uhlenbeck processes with certain boundary conditions corresponding to the hydrodynamic equation.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Voter Model with a Slow Membrane\",\"authors\":\"Linjie Zhao, Xiaofeng Xue\",\"doi\":\"10.1007/s10959-024-01321-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We introduce the voter model on the infinite integer lattice with a slow membrane and investigate its hydrodynamic behavior and nonequilibrium fluctuations. The voter model is one of the classical interacting particle systems with state space <span>\\\\(\\\\{0,1\\\\}^{\\\\mathbb Z^d}\\\\)</span>. In our model, a voter adopts one of its neighbors’ opinion at rate one except for neighbors crossing the hyperplane <span>\\\\(\\\\{x:x_1 = 1/2\\\\}\\\\)</span>, where the rate is <span>\\\\(\\\\alpha N^{-\\\\beta }\\\\)</span> and thus is called a slow membrane. Above, <span>\\\\(\\\\alpha &gt;0 \\\\ \\\\textrm{and} \\\\ \\\\beta \\\\ge 0\\\\)</span> are given parameters and the positive integer <i>N</i> is a scaling parameter. We consider the limit <span>\\\\(N \\\\rightarrow \\\\infty \\\\)</span> and prove that the hydrodynamic limits are given by the heat equation without or with Robin/Neumann conditions depending on the values of <span>\\\\(\\\\beta \\\\)</span>. We also consider the nonequilibrium fluctuations, where the limit is described by generalized Ornstein–Uhlenbeck processes with certain boundary conditions corresponding to the hydrodynamic equation.</p>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-03-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s10959-024-01321-9\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10959-024-01321-9","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们介绍了无限整数晶格上带有慢膜的投票者模型,并研究了它的流体力学行为和非平衡波动。投票者模型是经典的相互作用粒子系统之一,其状态空间为(\{0,1\}^{mathbb Z^d}\)。在我们的模型中,一个投票者会以1的速率采纳其邻居的意见,除非邻居跨越了超平面\(\{x:x_1 = 1/2\}\) ,此时的速率为\(\alpha N^{-\beta }\) ,因此被称为慢膜。上面,\(\alpha >0 \textrm{and} \ \beta \ge 0\) 是给定参数,正整数 N 是缩放参数。我们考虑了极限 \(N \rightarrow \infty \),并证明流体力学极限是由热方程给出的,不带或带罗宾/诺伊曼条件取决于 \(\beta \)的值。我们还考虑了非平衡波动,在这种情况下,极限由广义的奥恩斯坦-乌伦贝克过程描述,并带有与流体力学方程相对应的某些边界条件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
The Voter Model with a Slow Membrane

We introduce the voter model on the infinite integer lattice with a slow membrane and investigate its hydrodynamic behavior and nonequilibrium fluctuations. The voter model is one of the classical interacting particle systems with state space \(\{0,1\}^{\mathbb Z^d}\). In our model, a voter adopts one of its neighbors’ opinion at rate one except for neighbors crossing the hyperplane \(\{x:x_1 = 1/2\}\), where the rate is \(\alpha N^{-\beta }\) and thus is called a slow membrane. Above, \(\alpha >0 \ \textrm{and} \ \beta \ge 0\) are given parameters and the positive integer N is a scaling parameter. We consider the limit \(N \rightarrow \infty \) and prove that the hydrodynamic limits are given by the heat equation without or with Robin/Neumann conditions depending on the values of \(\beta \). We also consider the nonequilibrium fluctuations, where the limit is described by generalized Ornstein–Uhlenbeck processes with certain boundary conditions corresponding to the hydrodynamic equation.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信