兰金-塞尔伯格 L 函数的迪里希勒系数指数和

Guangshi Lü, Qiang Ma
{"title":"兰金-塞尔伯格 L 函数的迪里希勒系数指数和","authors":"Guangshi Lü, Qiang Ma","doi":"10.1007/s00605-024-01952-4","DOIUrl":null,"url":null,"abstract":"<p>We describe a new method to obtain upper bounds for exponential sums with multiplicative coefficients without the Ramanujan conjecture. We verify these hypothesis for (with mild restrictions) the Rankin–Selberg <i>L</i>-functions attached to two cuspidal automorphic representations.\n</p>","PeriodicalId":18913,"journal":{"name":"Monatshefte für Mathematik","volume":"50 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Exponential sums with the Dirichlet coefficients of Rankin–Selberg L-functions\",\"authors\":\"Guangshi Lü, Qiang Ma\",\"doi\":\"10.1007/s00605-024-01952-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We describe a new method to obtain upper bounds for exponential sums with multiplicative coefficients without the Ramanujan conjecture. We verify these hypothesis for (with mild restrictions) the Rankin–Selberg <i>L</i>-functions attached to two cuspidal automorphic representations.\\n</p>\",\"PeriodicalId\":18913,\"journal\":{\"name\":\"Monatshefte für Mathematik\",\"volume\":\"50 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-03-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Monatshefte für Mathematik\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s00605-024-01952-4\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Monatshefte für Mathematik","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s00605-024-01952-4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们描述了一种无需拉马努扬猜想就能获得指数和乘法系数上限的新方法。我们(在温和的限制条件下)验证了附加于两个簕杜鹃花自动表征的兰金-塞尔伯格 L 函数的这些假设。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Exponential sums with the Dirichlet coefficients of Rankin–Selberg L-functions

We describe a new method to obtain upper bounds for exponential sums with multiplicative coefficients without the Ramanujan conjecture. We verify these hypothesis for (with mild restrictions) the Rankin–Selberg L-functions attached to two cuspidal automorphic representations.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信