克雷莫纳群的同调稳定性

Markus Szymik
{"title":"克雷莫纳群的同调稳定性","authors":"Markus Szymik","doi":"arxiv-2403.07546","DOIUrl":null,"url":null,"abstract":"The Cremona groups are the groups of all birational equivalences of\nprojective spaces and, equivalently, the automorphism groups of the rational\nfunction fields. We construct highly connected spaces on which these groups act\nin a way that allows us to deduce that their abelianisations, and more\ngenerally, the homologies of these groups, stabilise as the dimension\nincreases.","PeriodicalId":501143,"journal":{"name":"arXiv - MATH - K-Theory and Homology","volume":"18 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Homological stability for the Cremona groups\",\"authors\":\"Markus Szymik\",\"doi\":\"arxiv-2403.07546\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The Cremona groups are the groups of all birational equivalences of\\nprojective spaces and, equivalently, the automorphism groups of the rational\\nfunction fields. We construct highly connected spaces on which these groups act\\nin a way that allows us to deduce that their abelianisations, and more\\ngenerally, the homologies of these groups, stabilise as the dimension\\nincreases.\",\"PeriodicalId\":501143,\"journal\":{\"name\":\"arXiv - MATH - K-Theory and Homology\",\"volume\":\"18 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-03-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - K-Theory and Homology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2403.07546\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - K-Theory and Homology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2403.07546","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

克雷莫纳群是投影空间的所有双等价群,等价于有理函数场的自变群。我们构建了这些群作用于其上的高度连接空间,从而推导出它们的无差别化,更广义地说,这些群的同调,会随着维数的增加而稳定。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Homological stability for the Cremona groups
The Cremona groups are the groups of all birational equivalences of projective spaces and, equivalently, the automorphism groups of the rational function fields. We construct highly connected spaces on which these groups act in a way that allows us to deduce that their abelianisations, and more generally, the homologies of these groups, stabilise as the dimension increases.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信