扩展拟合 K 超几何函数及其应用

IF 1 4区 物理与天体物理 Q3 PHYSICS, MATHEMATICAL
Maham Abdul Qayyum, Aya Mohammed Dhiaa, Abid Mahboob, Muhammad Waheed Rasheed, Abdu Alameri
{"title":"扩展拟合 K 超几何函数及其应用","authors":"Maham Abdul Qayyum, Aya Mohammed Dhiaa, Abid Mahboob, Muhammad Waheed Rasheed, Abdu Alameri","doi":"10.1155/2024/5709319","DOIUrl":null,"url":null,"abstract":"The extended conformable <i>k</i>-hypergeometric function finds various applications in physics due to its ability to describe complex mathematical relationships arising in different physical scenarios. Here are a few instances of its uses in physics, including nuclear physics, fluid dynamics, quantum mechanics, and astronomy. The main objectives of this paper are to introduce the extended conformable <i>k</i>-hypergeometric and confluent hypergeometric functions by utilizing the new definition of the <span><svg height=\"11.5564pt\" style=\"vertical-align:-2.26807pt\" version=\"1.1\" viewbox=\"-0.0498162 -9.28833 14.847 11.5564\" width=\"14.847pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,0,0)\"></path></g><g transform=\"matrix(.013,0,0,-0.013,4.498,0)\"></path></g><g transform=\"matrix(.013,0,0,-0.013,11.883,0)\"></path></g></svg><span></span><span><svg height=\"11.5564pt\" style=\"vertical-align:-2.26807pt\" version=\"1.1\" viewbox=\"16.9761838 -9.28833 11.233 11.5564\" width=\"11.233pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,17.026,0)\"></path></g><g transform=\"matrix(.013,0,0,-0.013,23.566,0)\"></path></g></svg>-</span></span>beta function and studying its important properties, like integral representation, summation formula, derivative formula, transform formula, and generating function. Also, introduce the extension of the Riemann–Liouville fractional derivative and establish some results related to the newly defined fractional operator, such as the Mellin transform and relations to extended <span><svg height=\"11.5564pt\" style=\"vertical-align:-2.26807pt\" version=\"1.1\" viewbox=\"-0.0498162 -9.28833 14.847 11.5564\" width=\"14.847pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,0,0)\"><use xlink:href=\"#g113-41\"></use></g><g transform=\"matrix(.013,0,0,-0.013,4.498,0)\"><use xlink:href=\"#g113-223\"></use></g><g transform=\"matrix(.013,0,0,-0.013,11.883,0)\"><use xlink:href=\"#g113-45\"></use></g></svg><span></span><span><svg height=\"11.5564pt\" style=\"vertical-align:-2.26807pt\" version=\"1.1\" viewbox=\"16.9761838 -9.28833 11.233 11.5564\" width=\"11.233pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,17.026,0)\"><use xlink:href=\"#g113-108\"></use></g><g transform=\"matrix(.013,0,0,-0.013,23.566,0)\"><use xlink:href=\"#g113-42\"></use></g></svg>-</span></span>hypergeometric functions.","PeriodicalId":49111,"journal":{"name":"Advances in Mathematical Physics","volume":"12 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2024-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Extended Conformable K-Hypergeometric Function and Its Application\",\"authors\":\"Maham Abdul Qayyum, Aya Mohammed Dhiaa, Abid Mahboob, Muhammad Waheed Rasheed, Abdu Alameri\",\"doi\":\"10.1155/2024/5709319\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The extended conformable <i>k</i>-hypergeometric function finds various applications in physics due to its ability to describe complex mathematical relationships arising in different physical scenarios. Here are a few instances of its uses in physics, including nuclear physics, fluid dynamics, quantum mechanics, and astronomy. The main objectives of this paper are to introduce the extended conformable <i>k</i>-hypergeometric and confluent hypergeometric functions by utilizing the new definition of the <span><svg height=\\\"11.5564pt\\\" style=\\\"vertical-align:-2.26807pt\\\" version=\\\"1.1\\\" viewbox=\\\"-0.0498162 -9.28833 14.847 11.5564\\\" width=\\\"14.847pt\\\" xmlns=\\\"http://www.w3.org/2000/svg\\\" xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\"><g transform=\\\"matrix(.013,0,0,-0.013,0,0)\\\"></path></g><g transform=\\\"matrix(.013,0,0,-0.013,4.498,0)\\\"></path></g><g transform=\\\"matrix(.013,0,0,-0.013,11.883,0)\\\"></path></g></svg><span></span><span><svg height=\\\"11.5564pt\\\" style=\\\"vertical-align:-2.26807pt\\\" version=\\\"1.1\\\" viewbox=\\\"16.9761838 -9.28833 11.233 11.5564\\\" width=\\\"11.233pt\\\" xmlns=\\\"http://www.w3.org/2000/svg\\\" xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\"><g transform=\\\"matrix(.013,0,0,-0.013,17.026,0)\\\"></path></g><g transform=\\\"matrix(.013,0,0,-0.013,23.566,0)\\\"></path></g></svg>-</span></span>beta function and studying its important properties, like integral representation, summation formula, derivative formula, transform formula, and generating function. Also, introduce the extension of the Riemann–Liouville fractional derivative and establish some results related to the newly defined fractional operator, such as the Mellin transform and relations to extended <span><svg height=\\\"11.5564pt\\\" style=\\\"vertical-align:-2.26807pt\\\" version=\\\"1.1\\\" viewbox=\\\"-0.0498162 -9.28833 14.847 11.5564\\\" width=\\\"14.847pt\\\" xmlns=\\\"http://www.w3.org/2000/svg\\\" xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\"><g transform=\\\"matrix(.013,0,0,-0.013,0,0)\\\"><use xlink:href=\\\"#g113-41\\\"></use></g><g transform=\\\"matrix(.013,0,0,-0.013,4.498,0)\\\"><use xlink:href=\\\"#g113-223\\\"></use></g><g transform=\\\"matrix(.013,0,0,-0.013,11.883,0)\\\"><use xlink:href=\\\"#g113-45\\\"></use></g></svg><span></span><span><svg height=\\\"11.5564pt\\\" style=\\\"vertical-align:-2.26807pt\\\" version=\\\"1.1\\\" viewbox=\\\"16.9761838 -9.28833 11.233 11.5564\\\" width=\\\"11.233pt\\\" xmlns=\\\"http://www.w3.org/2000/svg\\\" xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\"><g transform=\\\"matrix(.013,0,0,-0.013,17.026,0)\\\"><use xlink:href=\\\"#g113-108\\\"></use></g><g transform=\\\"matrix(.013,0,0,-0.013,23.566,0)\\\"><use xlink:href=\\\"#g113-42\\\"></use></g></svg>-</span></span>hypergeometric functions.\",\"PeriodicalId\":49111,\"journal\":{\"name\":\"Advances in Mathematical Physics\",\"volume\":\"12 1\",\"pages\":\"\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2024-03-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Mathematical Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1155/2024/5709319\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PHYSICS, MATHEMATICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Mathematical Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1155/2024/5709319","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
引用次数: 0

摘要

扩展保角 k- 双曲函数能够描述不同物理场景中出现的复杂数学关系,因此在物理学中有着广泛的应用。以下是其在物理学中的一些应用实例,包括核物理、流体力学、量子力学和天文学。本文的主要目的是利用 -beta 函数的新定义,介绍扩展的保形 k- 超几何函数和汇合超几何函数,并研究其重要性质,如积分表示、求和公式、导数公式、变换公式和生成函数。同时,介绍黎曼-刘维尔分数导数的扩展,并建立与新定义的分数算子相关的一些结果,如梅林变换和与扩展-超几何函数的关系。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Extended Conformable K-Hypergeometric Function and Its Application
The extended conformable k-hypergeometric function finds various applications in physics due to its ability to describe complex mathematical relationships arising in different physical scenarios. Here are a few instances of its uses in physics, including nuclear physics, fluid dynamics, quantum mechanics, and astronomy. The main objectives of this paper are to introduce the extended conformable k-hypergeometric and confluent hypergeometric functions by utilizing the new definition of the -beta function and studying its important properties, like integral representation, summation formula, derivative formula, transform formula, and generating function. Also, introduce the extension of the Riemann–Liouville fractional derivative and establish some results related to the newly defined fractional operator, such as the Mellin transform and relations to extended -hypergeometric functions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advances in Mathematical Physics
Advances in Mathematical Physics 数学-应用数学
CiteScore
2.40
自引率
8.30%
发文量
151
审稿时长
>12 weeks
期刊介绍: Advances in Mathematical Physics publishes papers that seek to understand mathematical basis of physical phenomena, and solve problems in physics via mathematical approaches. The journal welcomes submissions from mathematical physicists, theoretical physicists, and mathematicians alike. As well as original research, Advances in Mathematical Physics also publishes focused review articles that examine the state of the art, identify emerging trends, and suggest future directions for developing fields.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信