利用强化学习进行四旋翼飞行器控制的自适应增益调度

Mike Timmerman, Aryan Patel, Tim Reinhart
{"title":"利用强化学习进行四旋翼飞行器控制的自适应增益调度","authors":"Mike Timmerman, Aryan Patel, Tim Reinhart","doi":"arxiv-2403.07216","DOIUrl":null,"url":null,"abstract":"The paper presents a technique using reinforcement learning (RL) to adapt the\ncontrol gains of a quadcopter controller. Specifically, we employed Proximal\nPolicy Optimization (PPO) to train a policy which adapts the gains of a\ncascaded feedback controller in-flight. The primary goal of this controller is\nto minimize tracking error while following a specified trajectory. The paper's\nkey objective is to analyze the effectiveness of the adaptive gain policy and\ncompare it to the performance of a static gain control algorithm, where the\nIntegral Squared Error and Integral Time Squared Error are used as metrics. The\nresults show that the adaptive gain scheme achieves over 40$\\%$ decrease in\ntracking error as compared to the static gain controller.","PeriodicalId":501062,"journal":{"name":"arXiv - CS - Systems and Control","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Adaptive Gain Scheduling using Reinforcement Learning for Quadcopter Control\",\"authors\":\"Mike Timmerman, Aryan Patel, Tim Reinhart\",\"doi\":\"arxiv-2403.07216\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The paper presents a technique using reinforcement learning (RL) to adapt the\\ncontrol gains of a quadcopter controller. Specifically, we employed Proximal\\nPolicy Optimization (PPO) to train a policy which adapts the gains of a\\ncascaded feedback controller in-flight. The primary goal of this controller is\\nto minimize tracking error while following a specified trajectory. The paper's\\nkey objective is to analyze the effectiveness of the adaptive gain policy and\\ncompare it to the performance of a static gain control algorithm, where the\\nIntegral Squared Error and Integral Time Squared Error are used as metrics. The\\nresults show that the adaptive gain scheme achieves over 40$\\\\%$ decrease in\\ntracking error as compared to the static gain controller.\",\"PeriodicalId\":501062,\"journal\":{\"name\":\"arXiv - CS - Systems and Control\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-03-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - CS - Systems and Control\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2403.07216\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Systems and Control","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2403.07216","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文介绍了一种利用强化学习(RL)调整四旋翼飞行器控制器增益的技术。具体来说,我们采用了 "近端策略优化"(ProximalPolicy Optimization,PPO)来训练一种策略,以调整飞行中级联反馈控制器的增益。该控制器的主要目标是在遵循指定轨迹的同时使跟踪误差最小化。本文的主要目的是分析自适应增益策略的有效性,并将其与静态增益控制算法的性能进行比较。结果表明,与静态增益控制器相比,自适应增益方案的跟踪误差降低了 40% 以上。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Adaptive Gain Scheduling using Reinforcement Learning for Quadcopter Control
The paper presents a technique using reinforcement learning (RL) to adapt the control gains of a quadcopter controller. Specifically, we employed Proximal Policy Optimization (PPO) to train a policy which adapts the gains of a cascaded feedback controller in-flight. The primary goal of this controller is to minimize tracking error while following a specified trajectory. The paper's key objective is to analyze the effectiveness of the adaptive gain policy and compare it to the performance of a static gain control algorithm, where the Integral Squared Error and Integral Time Squared Error are used as metrics. The results show that the adaptive gain scheme achieves over 40$\%$ decrease in tracking error as compared to the static gain controller.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信