用改进的灰狼法优化等级不足的全球导航卫星系统网络的 L1 准则

IF 1.2 4区 地球科学 Q3 ENGINEERING, CIVIL
V. Mahboub, S. Ebrahimzadeh, A. Baghani, A. Rastegar, M. Zanganeh
{"title":"用改进的灰狼法优化等级不足的全球导航卫星系统网络的 L1 准则","authors":"V. Mahboub, S. Ebrahimzadeh, A. Baghani, A. Rastegar, M. Zanganeh","doi":"10.1080/00396265.2024.2327124","DOIUrl":null,"url":null,"abstract":"An improved grey wolf optimization (GWO) is proposed for direct L1-norm optimization in rank deficient GNSS networks to detect outliers since the standard GWO and the global optimization (GO) algor...","PeriodicalId":49459,"journal":{"name":"Survey Review","volume":"42 1","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2024-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"L1-norm optimisation of rank deficient GNSS networks by an improved Grey Wolf method\",\"authors\":\"V. Mahboub, S. Ebrahimzadeh, A. Baghani, A. Rastegar, M. Zanganeh\",\"doi\":\"10.1080/00396265.2024.2327124\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"An improved grey wolf optimization (GWO) is proposed for direct L1-norm optimization in rank deficient GNSS networks to detect outliers since the standard GWO and the global optimization (GO) algor...\",\"PeriodicalId\":49459,\"journal\":{\"name\":\"Survey Review\",\"volume\":\"42 1\",\"pages\":\"\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2024-03-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Survey Review\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1080/00396265.2024.2327124\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, CIVIL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Survey Review","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1080/00396265.2024.2327124","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 0

摘要

由于标准灰狼优化(GWO)算法和全局优化(GO)算法都是在GNSS网络中直接进行L1正则优化以检测异常值,因此提出了一种改进的灰狼优化(GWO)算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
L1-norm optimisation of rank deficient GNSS networks by an improved Grey Wolf method
An improved grey wolf optimization (GWO) is proposed for direct L1-norm optimization in rank deficient GNSS networks to detect outliers since the standard GWO and the global optimization (GO) algor...
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Survey Review
Survey Review 地学-地球科学综合
CiteScore
3.50
自引率
6.20%
发文量
33
审稿时长
6 months
期刊介绍: Survey Review is an international journal that has been published since 1931, until recently under the auspices of the Commonwealth Association of Surveying and Land Economy (CASLE). The journal is now published for Survey Review Ltd and brings together research, theory and practice of positioning and measurement, engineering surveying, cadastre and land management, and spatial information management. All papers are peer reviewed and are drawn from an international community, including government, private industry and academia. Survey Review is invaluable to practitioners, academics, researchers and students who are anxious to maintain their currency of knowledge in a rapidly developing field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信