{"title":"基于 d 维单粒子态的无预共享密钥多方半量子私有比较、乘法和求和混合协议","authors":"Jiang-Yuan Lian, Tian-Yu Ye","doi":"10.1140/epjqt/s40507-024-00228-y","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, by utilizing <i>d</i>-dimensional single-particle states, three semiquantum cryptography protocols, i.e., the multi-party semiquantum private comparison (MSQPC) protocol, the multi-party semiquantum multiplication (MSQM) protocol and the multi-party semiquantum summation (MSQS) protocol, can be achieved simultaneously under the assistance of two semi-honest quantum third parties (TPs). Here, the proposed MSQPC scheme is the only protocol which is devoted to judging the size relationship of secret integers from more than two semiquantum participants without a pre-shared key. And the proposed MSQM protocol absorbs the innovative concept of semiquantumness into quantum multiplication for the first time, which can calculate the modulo <i>d</i> multiplication of private inputs from more than two semiquantum users. As for the proposed MSQS protocol, it is the only semiquantum summation protocol which aims to accomplish the modulo <i>d</i> addition of more than three semiquantum users’ private integers. Neither quantum entanglement swapping nor unitary operations are necessary in the three proposed protocols. The security analysis verifies in detail that both the external attacks and the internal attacks can be resisted in the three proposed protocols.</p></div>","PeriodicalId":547,"journal":{"name":"EPJ Quantum Technology","volume":"11 1","pages":""},"PeriodicalIF":5.8000,"publicationDate":"2024-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://epjquantumtechnology.springeropen.com/counter/pdf/10.1140/epjqt/s40507-024-00228-y","citationCount":"0","resultStr":"{\"title\":\"Hybrid protocols for multi-party semiquantum private comparison, multiplication and summation without a pre-shared key based on d-dimensional single-particle states\",\"authors\":\"Jiang-Yuan Lian, Tian-Yu Ye\",\"doi\":\"10.1140/epjqt/s40507-024-00228-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this paper, by utilizing <i>d</i>-dimensional single-particle states, three semiquantum cryptography protocols, i.e., the multi-party semiquantum private comparison (MSQPC) protocol, the multi-party semiquantum multiplication (MSQM) protocol and the multi-party semiquantum summation (MSQS) protocol, can be achieved simultaneously under the assistance of two semi-honest quantum third parties (TPs). Here, the proposed MSQPC scheme is the only protocol which is devoted to judging the size relationship of secret integers from more than two semiquantum participants without a pre-shared key. And the proposed MSQM protocol absorbs the innovative concept of semiquantumness into quantum multiplication for the first time, which can calculate the modulo <i>d</i> multiplication of private inputs from more than two semiquantum users. As for the proposed MSQS protocol, it is the only semiquantum summation protocol which aims to accomplish the modulo <i>d</i> addition of more than three semiquantum users’ private integers. Neither quantum entanglement swapping nor unitary operations are necessary in the three proposed protocols. The security analysis verifies in detail that both the external attacks and the internal attacks can be resisted in the three proposed protocols.</p></div>\",\"PeriodicalId\":547,\"journal\":{\"name\":\"EPJ Quantum Technology\",\"volume\":\"11 1\",\"pages\":\"\"},\"PeriodicalIF\":5.8000,\"publicationDate\":\"2024-03-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://epjquantumtechnology.springeropen.com/counter/pdf/10.1140/epjqt/s40507-024-00228-y\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"EPJ Quantum Technology\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://link.springer.com/article/10.1140/epjqt/s40507-024-00228-y\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"OPTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"EPJ Quantum Technology","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1140/epjqt/s40507-024-00228-y","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPTICS","Score":null,"Total":0}
Hybrid protocols for multi-party semiquantum private comparison, multiplication and summation without a pre-shared key based on d-dimensional single-particle states
In this paper, by utilizing d-dimensional single-particle states, three semiquantum cryptography protocols, i.e., the multi-party semiquantum private comparison (MSQPC) protocol, the multi-party semiquantum multiplication (MSQM) protocol and the multi-party semiquantum summation (MSQS) protocol, can be achieved simultaneously under the assistance of two semi-honest quantum third parties (TPs). Here, the proposed MSQPC scheme is the only protocol which is devoted to judging the size relationship of secret integers from more than two semiquantum participants without a pre-shared key. And the proposed MSQM protocol absorbs the innovative concept of semiquantumness into quantum multiplication for the first time, which can calculate the modulo d multiplication of private inputs from more than two semiquantum users. As for the proposed MSQS protocol, it is the only semiquantum summation protocol which aims to accomplish the modulo d addition of more than three semiquantum users’ private integers. Neither quantum entanglement swapping nor unitary operations are necessary in the three proposed protocols. The security analysis verifies in detail that both the external attacks and the internal attacks can be resisted in the three proposed protocols.
期刊介绍:
Driven by advances in technology and experimental capability, the last decade has seen the emergence of quantum technology: a new praxis for controlling the quantum world. It is now possible to engineer complex, multi-component systems that merge the once distinct fields of quantum optics and condensed matter physics.
EPJ Quantum Technology covers theoretical and experimental advances in subjects including but not limited to the following:
Quantum measurement, metrology and lithography
Quantum complex systems, networks and cellular automata
Quantum electromechanical systems
Quantum optomechanical systems
Quantum machines, engineering and nanorobotics
Quantum control theory
Quantum information, communication and computation
Quantum thermodynamics
Quantum metamaterials
The effect of Casimir forces on micro- and nano-electromechanical systems
Quantum biology
Quantum sensing
Hybrid quantum systems
Quantum simulations.