在生命体征传感器开发中应用以用户为中心的设计和 Pi-CON 方法。

Q3 Engineering
Steffen Baumann, Richard T Stone
{"title":"在生命体征传感器开发中应用以用户为中心的设计和 Pi-CON 方法。","authors":"Steffen Baumann, Richard T Stone","doi":"10.1080/03091902.2024.2325964","DOIUrl":null,"url":null,"abstract":"<p><p>Although telehealth, and in particular RPM, have demonstrated to drive many benefits, such as reduction in cost and hospital-acquired infections, previous research has shown many usability challenges when patients operate a medical device without supervision of a medical professional. To combat this issue, the Pi-CON methodology is applied to develop a novel sensor with the objective to continuously acquire a patient's vital signs from a distance, without the need to attach any markers or sensors to the patient, and with limited user interaction required. Pi-CON stands for passive, continuous and non-contact, and describes a way to improve the user experience for patients or caregivers that have a need to perform a vital signs measurement themselves, without the presence of a medical professional. The developed sensor utilises radar and optical sensing technologies and transmits acquired data to a cloud-based service where it can be viewed in near real-time by the patient or family members from anywhere <i>via</i> an intuitive user interface. This user interface, as well as the sensor itself were designed based on design needs and requirements to adhere to the user-centered design process. The development of the sensor, including utilised technologies, components, and the user interface are presented, including inspirations for future work.</p>","PeriodicalId":39637,"journal":{"name":"Journal of Medical Engineering and Technology","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Applying user-centered design and the Pi-CON methodology for vital signs sensor development.\",\"authors\":\"Steffen Baumann, Richard T Stone\",\"doi\":\"10.1080/03091902.2024.2325964\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Although telehealth, and in particular RPM, have demonstrated to drive many benefits, such as reduction in cost and hospital-acquired infections, previous research has shown many usability challenges when patients operate a medical device without supervision of a medical professional. To combat this issue, the Pi-CON methodology is applied to develop a novel sensor with the objective to continuously acquire a patient's vital signs from a distance, without the need to attach any markers or sensors to the patient, and with limited user interaction required. Pi-CON stands for passive, continuous and non-contact, and describes a way to improve the user experience for patients or caregivers that have a need to perform a vital signs measurement themselves, without the presence of a medical professional. The developed sensor utilises radar and optical sensing technologies and transmits acquired data to a cloud-based service where it can be viewed in near real-time by the patient or family members from anywhere <i>via</i> an intuitive user interface. This user interface, as well as the sensor itself were designed based on design needs and requirements to adhere to the user-centered design process. The development of the sensor, including utilised technologies, components, and the user interface are presented, including inspirations for future work.</p>\",\"PeriodicalId\":39637,\"journal\":{\"name\":\"Journal of Medical Engineering and Technology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Medical Engineering and Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/03091902.2024.2325964\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/3/12 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Medical Engineering and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/03091902.2024.2325964","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/3/12 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0

摘要

虽然远程医疗,特别是远程医疗转运(RPM)已被证明能带来许多好处,如降低成本和减少医院感染,但以往的研究表明,当病人在没有专业医务人员的监督下操作医疗设备时,存在许多可用性方面的挑战。为解决这一问题,我们采用 Pi-CON 方法开发了一种新型传感器,旨在远距离连续采集病人的生命体征,无需在病人身上安装任何标记或传感器,而且只需与用户进行有限的互动。Pi-CON 是被动、连续和非接触的缩写,它描述了一种改善用户体验的方法,即病人或护理人员需要在没有专业医务人员在场的情况下自己进行生命体征测量。所开发的传感器利用雷达和光学传感技术,将获取的数据传输到云端服务,病人或家属可在任何地方通过直观的用户界面近乎实时地查看这些数据。该用户界面以及传感器本身都是根据设计需求和要求设计的,符合以用户为中心的设计流程。本文介绍了传感器的开发过程,包括所使用的技术、组件和用户界面,以及对未来工作的启发。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Applying user-centered design and the Pi-CON methodology for vital signs sensor development.

Although telehealth, and in particular RPM, have demonstrated to drive many benefits, such as reduction in cost and hospital-acquired infections, previous research has shown many usability challenges when patients operate a medical device without supervision of a medical professional. To combat this issue, the Pi-CON methodology is applied to develop a novel sensor with the objective to continuously acquire a patient's vital signs from a distance, without the need to attach any markers or sensors to the patient, and with limited user interaction required. Pi-CON stands for passive, continuous and non-contact, and describes a way to improve the user experience for patients or caregivers that have a need to perform a vital signs measurement themselves, without the presence of a medical professional. The developed sensor utilises radar and optical sensing technologies and transmits acquired data to a cloud-based service where it can be viewed in near real-time by the patient or family members from anywhere via an intuitive user interface. This user interface, as well as the sensor itself were designed based on design needs and requirements to adhere to the user-centered design process. The development of the sensor, including utilised technologies, components, and the user interface are presented, including inspirations for future work.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Medical Engineering and Technology
Journal of Medical Engineering and Technology Engineering-Biomedical Engineering
CiteScore
4.60
自引率
0.00%
发文量
77
期刊介绍: The Journal of Medical Engineering & Technology is an international, independent, multidisciplinary, bimonthly journal promoting an understanding of the physiological processes underlying disease processes and the appropriate application of technology. Features include authoritative review papers, the reporting of original research, and evaluation reports on new and existing techniques and devices. Each issue of the journal contains a comprehensive information service which provides news relevant to the world of medical technology, details of new products, book reviews, and selected contents of related journals.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信