{"title":"将同源遗传信号与系统发育一致性区分开来,可以澄清进化历史与物种相互作用之间的相互作用。","authors":"Benoît Perez-Lamarque, Hélène Morlon","doi":"10.1093/sysbio/syae013","DOIUrl":null,"url":null,"abstract":"<p><p>Interspecific interactions, including host-symbiont associations, can profoundly affect the evolution of the interacting species. Given the phylogenies of host and symbiont clades and knowledge of which host species interact with which symbiont, two questions are often asked: \"Do closely related hosts interact with closely related symbionts?\" and \"Do host and symbiont phylogenies mirror one another?.\" These questions are intertwined and can even collapse under specific situations, such that they are often confused one with the other. However, in most situations, a positive answer to the first question, hereafter referred to as \"cophylogenetic signal,\" does not imply a close match between the host and symbiont phylogenies. It suggests only that past evolutionary history has contributed to shaping present-day interactions, which can arise, for example, through present-day trait matching, or from a single ancient vicariance event that increases the probability that closely related species overlap geographically. A positive answer to the second, referred to as \"phylogenetic congruence,\" is more restrictive as it suggests a close match between the two phylogenies, which may happen, for example, if symbiont diversification tracks host diversification or if the diversifications of the two clades were subject to the same succession of vicariance events. Here we apply a set of methods (ParaFit, PACo, and eMPRess), whose significance is often interpreted as evidence for phylogenetic congruence, to simulations under 3 biologically realistic scenarios of trait matching, a single ancient vicariance event, and phylogenetic tracking with frequent cospeciation events. The latter is the only scenario that generates phylogenetic congruence, whereas the first 2 generate a cophylogenetic signal in the absence of phylogenetic congruence. We find that tests of global-fit methods (ParaFit and PACo) are significant under the 3 scenarios, whereas tests of event-based methods (eMPRess) are only significant under the scenario of phylogenetic tracking. Therefore, significant results from global-fit methods should be interpreted in terms of cophylogenetic signal and not phylogenetic congruence; such significant results can arise under scenarios when hosts and symbionts had independent evolutionary histories. Conversely, significant results from event-based methods suggest a strong form of dependency between hosts and symbionts evolutionary histories. Clarifying the patterns detected by different cophylogenetic methods is key to understanding how interspecific interactions shape and are shaped by evolution.</p>","PeriodicalId":22120,"journal":{"name":"Systematic Biology","volume":null,"pages":null},"PeriodicalIF":6.1000,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Distinguishing Cophylogenetic Signal from Phylogenetic Congruence Clarifies the Interplay Between Evolutionary History and Species Interactions.\",\"authors\":\"Benoît Perez-Lamarque, Hélène Morlon\",\"doi\":\"10.1093/sysbio/syae013\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Interspecific interactions, including host-symbiont associations, can profoundly affect the evolution of the interacting species. Given the phylogenies of host and symbiont clades and knowledge of which host species interact with which symbiont, two questions are often asked: \\\"Do closely related hosts interact with closely related symbionts?\\\" and \\\"Do host and symbiont phylogenies mirror one another?.\\\" These questions are intertwined and can even collapse under specific situations, such that they are often confused one with the other. However, in most situations, a positive answer to the first question, hereafter referred to as \\\"cophylogenetic signal,\\\" does not imply a close match between the host and symbiont phylogenies. It suggests only that past evolutionary history has contributed to shaping present-day interactions, which can arise, for example, through present-day trait matching, or from a single ancient vicariance event that increases the probability that closely related species overlap geographically. A positive answer to the second, referred to as \\\"phylogenetic congruence,\\\" is more restrictive as it suggests a close match between the two phylogenies, which may happen, for example, if symbiont diversification tracks host diversification or if the diversifications of the two clades were subject to the same succession of vicariance events. Here we apply a set of methods (ParaFit, PACo, and eMPRess), whose significance is often interpreted as evidence for phylogenetic congruence, to simulations under 3 biologically realistic scenarios of trait matching, a single ancient vicariance event, and phylogenetic tracking with frequent cospeciation events. The latter is the only scenario that generates phylogenetic congruence, whereas the first 2 generate a cophylogenetic signal in the absence of phylogenetic congruence. We find that tests of global-fit methods (ParaFit and PACo) are significant under the 3 scenarios, whereas tests of event-based methods (eMPRess) are only significant under the scenario of phylogenetic tracking. Therefore, significant results from global-fit methods should be interpreted in terms of cophylogenetic signal and not phylogenetic congruence; such significant results can arise under scenarios when hosts and symbionts had independent evolutionary histories. Conversely, significant results from event-based methods suggest a strong form of dependency between hosts and symbionts evolutionary histories. Clarifying the patterns detected by different cophylogenetic methods is key to understanding how interspecific interactions shape and are shaped by evolution.</p>\",\"PeriodicalId\":22120,\"journal\":{\"name\":\"Systematic Biology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":6.1000,\"publicationDate\":\"2024-09-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Systematic Biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1093/sysbio/syae013\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"EVOLUTIONARY BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Systematic Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/sysbio/syae013","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"EVOLUTIONARY BIOLOGY","Score":null,"Total":0}
Distinguishing Cophylogenetic Signal from Phylogenetic Congruence Clarifies the Interplay Between Evolutionary History and Species Interactions.
Interspecific interactions, including host-symbiont associations, can profoundly affect the evolution of the interacting species. Given the phylogenies of host and symbiont clades and knowledge of which host species interact with which symbiont, two questions are often asked: "Do closely related hosts interact with closely related symbionts?" and "Do host and symbiont phylogenies mirror one another?." These questions are intertwined and can even collapse under specific situations, such that they are often confused one with the other. However, in most situations, a positive answer to the first question, hereafter referred to as "cophylogenetic signal," does not imply a close match between the host and symbiont phylogenies. It suggests only that past evolutionary history has contributed to shaping present-day interactions, which can arise, for example, through present-day trait matching, or from a single ancient vicariance event that increases the probability that closely related species overlap geographically. A positive answer to the second, referred to as "phylogenetic congruence," is more restrictive as it suggests a close match between the two phylogenies, which may happen, for example, if symbiont diversification tracks host diversification or if the diversifications of the two clades were subject to the same succession of vicariance events. Here we apply a set of methods (ParaFit, PACo, and eMPRess), whose significance is often interpreted as evidence for phylogenetic congruence, to simulations under 3 biologically realistic scenarios of trait matching, a single ancient vicariance event, and phylogenetic tracking with frequent cospeciation events. The latter is the only scenario that generates phylogenetic congruence, whereas the first 2 generate a cophylogenetic signal in the absence of phylogenetic congruence. We find that tests of global-fit methods (ParaFit and PACo) are significant under the 3 scenarios, whereas tests of event-based methods (eMPRess) are only significant under the scenario of phylogenetic tracking. Therefore, significant results from global-fit methods should be interpreted in terms of cophylogenetic signal and not phylogenetic congruence; such significant results can arise under scenarios when hosts and symbionts had independent evolutionary histories. Conversely, significant results from event-based methods suggest a strong form of dependency between hosts and symbionts evolutionary histories. Clarifying the patterns detected by different cophylogenetic methods is key to understanding how interspecific interactions shape and are shaped by evolution.
期刊介绍:
Systematic Biology is the bimonthly journal of the Society of Systematic Biologists. Papers for the journal are original contributions to the theory, principles, and methods of systematics as well as phylogeny, evolution, morphology, biogeography, paleontology, genetics, and the classification of all living things. A Points of View section offers a forum for discussion, while book reviews and announcements of general interest are also featured.