二元终点的双臂优效和非优效试验的最佳样本量分配。

IF 1.3 4区 医学 Q4 PHARMACOLOGY & PHARMACY
Pharmaceutical Statistics Pub Date : 2024-09-01 Epub Date: 2024-03-12 DOI:10.1002/pst.2375
Marietta Kirchner, Stefanie Schüpke, Meinhard Kieser
{"title":"二元终点的双臂优效和非优效试验的最佳样本量分配。","authors":"Marietta Kirchner, Stefanie Schüpke, Meinhard Kieser","doi":"10.1002/pst.2375","DOIUrl":null,"url":null,"abstract":"<p><p>The sample size of a clinical trial has to be large enough to ensure sufficient power for achieving the aim the study. On the other side, for ethical and economical reasons it should not be larger than necessary. The sample size allocation is one of the parameters that influences the required total sample size. For two-arm superiority and non-inferiority trials with binary endpoints, we performed extensive computations over a wide range of scenarios to determine the optimal allocation ratio that minimizes the total sample size if all other parameters are fixed. The results demonstrate, that for both superiority and non-inferiority trials the optimal allocation may deviate considerably from the case of equal sample size in both groups. However, the saving in sample size when allocating the total sample size optimally as compared to balanced allocation is typically small.</p>","PeriodicalId":19934,"journal":{"name":"Pharmaceutical Statistics","volume":" ","pages":"678-686"},"PeriodicalIF":1.3000,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optimal sample size allocation for two-arm superiority and non-inferiority trials with binary endpoints.\",\"authors\":\"Marietta Kirchner, Stefanie Schüpke, Meinhard Kieser\",\"doi\":\"10.1002/pst.2375\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The sample size of a clinical trial has to be large enough to ensure sufficient power for achieving the aim the study. On the other side, for ethical and economical reasons it should not be larger than necessary. The sample size allocation is one of the parameters that influences the required total sample size. For two-arm superiority and non-inferiority trials with binary endpoints, we performed extensive computations over a wide range of scenarios to determine the optimal allocation ratio that minimizes the total sample size if all other parameters are fixed. The results demonstrate, that for both superiority and non-inferiority trials the optimal allocation may deviate considerably from the case of equal sample size in both groups. However, the saving in sample size when allocating the total sample size optimally as compared to balanced allocation is typically small.</p>\",\"PeriodicalId\":19934,\"journal\":{\"name\":\"Pharmaceutical Statistics\",\"volume\":\" \",\"pages\":\"678-686\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2024-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Pharmaceutical Statistics\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1002/pst.2375\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/3/12 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q4\",\"JCRName\":\"PHARMACOLOGY & PHARMACY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pharmaceutical Statistics","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/pst.2375","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/3/12 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0

摘要

临床试验的样本量必须足够大,以确保有足够的力量达到研究目的。另一方面,出于伦理和经济方面的考虑,样本量也不应超过必要的范围。样本量分配是影响所需总样本量的参数之一。对于二元终点的双臂优效和非劣效试验,我们在多种情况下进行了大量计算,以确定在所有其他参数固定的情况下,使总样本量最小的最佳分配比例。结果表明,对于优效和非劣效试验,最佳分配比例可能与两组样本量相等的情况有很大偏差。不过,与均衡分配相比,最佳分配总样本量所节省的样本量通常很小。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Optimal sample size allocation for two-arm superiority and non-inferiority trials with binary endpoints.

The sample size of a clinical trial has to be large enough to ensure sufficient power for achieving the aim the study. On the other side, for ethical and economical reasons it should not be larger than necessary. The sample size allocation is one of the parameters that influences the required total sample size. For two-arm superiority and non-inferiority trials with binary endpoints, we performed extensive computations over a wide range of scenarios to determine the optimal allocation ratio that minimizes the total sample size if all other parameters are fixed. The results demonstrate, that for both superiority and non-inferiority trials the optimal allocation may deviate considerably from the case of equal sample size in both groups. However, the saving in sample size when allocating the total sample size optimally as compared to balanced allocation is typically small.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Pharmaceutical Statistics
Pharmaceutical Statistics 医学-统计学与概率论
CiteScore
2.70
自引率
6.70%
发文量
90
审稿时长
6-12 weeks
期刊介绍: Pharmaceutical Statistics is an industry-led initiative, tackling real problems in statistical applications. The Journal publishes papers that share experiences in the practical application of statistics within the pharmaceutical industry. It covers all aspects of pharmaceutical statistical applications from discovery, through pre-clinical development, clinical development, post-marketing surveillance, consumer health, production, epidemiology, and health economics. The Journal is both international and multidisciplinary. It includes high quality practical papers, case studies and review papers.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信