{"title":"与性状相关的基因是否在基因网络中聚集在一起?","authors":"Hyun Jung Koo, Wei Pan","doi":"10.1002/gepi.22557","DOIUrl":null,"url":null,"abstract":"<p>Genome-wide association studies (GWAS) have provided an abundance of information about the genetic variants and their loci that are associated to complex traits and diseases. However, due to linkage disequilibrium (LD) and noncoding regions of loci, it remains a challenge to pinpoint the causal genes. Gene network-based approaches, paired with network diffusion methods, have been proposed to prioritize causal genes and to boost statistical power in GWAS based on the assumption that trait-associated genes are clustered in a gene network. Due to the difficulty in mapping trait-associated variants to genes in GWAS, this assumption has never been directly or rigorously tested empirically. On the other hand, whole exome sequencing (WES) data focuses on the protein-coding regions, directly identifying trait-associated genes. In this study, we tested the assumption by leveraging the recently available exome-based association statistics from the UK Biobank WES data along with two types of networks. We found that almost all trait-associated genes were significantly more proximal to each other than randomly selected genes within both networks. These results support the assumption that trait-associated genes are clustered in gene networks, which can be further leveraged to boost the power of GWAS such as by introducing less stringent <i>p</i> value thresholds.</p>","PeriodicalId":12710,"journal":{"name":"Genetic Epidemiology","volume":"48 5","pages":"203-213"},"PeriodicalIF":1.7000,"publicationDate":"2024-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/gepi.22557","citationCount":"0","resultStr":"{\"title\":\"Are trait-associated genes clustered together in a gene network?\",\"authors\":\"Hyun Jung Koo, Wei Pan\",\"doi\":\"10.1002/gepi.22557\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Genome-wide association studies (GWAS) have provided an abundance of information about the genetic variants and their loci that are associated to complex traits and diseases. However, due to linkage disequilibrium (LD) and noncoding regions of loci, it remains a challenge to pinpoint the causal genes. Gene network-based approaches, paired with network diffusion methods, have been proposed to prioritize causal genes and to boost statistical power in GWAS based on the assumption that trait-associated genes are clustered in a gene network. Due to the difficulty in mapping trait-associated variants to genes in GWAS, this assumption has never been directly or rigorously tested empirically. On the other hand, whole exome sequencing (WES) data focuses on the protein-coding regions, directly identifying trait-associated genes. In this study, we tested the assumption by leveraging the recently available exome-based association statistics from the UK Biobank WES data along with two types of networks. We found that almost all trait-associated genes were significantly more proximal to each other than randomly selected genes within both networks. These results support the assumption that trait-associated genes are clustered in gene networks, which can be further leveraged to boost the power of GWAS such as by introducing less stringent <i>p</i> value thresholds.</p>\",\"PeriodicalId\":12710,\"journal\":{\"name\":\"Genetic Epidemiology\",\"volume\":\"48 5\",\"pages\":\"203-213\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2024-03-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/gepi.22557\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Genetic Epidemiology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/gepi.22557\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"GENETICS & HEREDITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Genetic Epidemiology","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/gepi.22557","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
Are trait-associated genes clustered together in a gene network?
Genome-wide association studies (GWAS) have provided an abundance of information about the genetic variants and their loci that are associated to complex traits and diseases. However, due to linkage disequilibrium (LD) and noncoding regions of loci, it remains a challenge to pinpoint the causal genes. Gene network-based approaches, paired with network diffusion methods, have been proposed to prioritize causal genes and to boost statistical power in GWAS based on the assumption that trait-associated genes are clustered in a gene network. Due to the difficulty in mapping trait-associated variants to genes in GWAS, this assumption has never been directly or rigorously tested empirically. On the other hand, whole exome sequencing (WES) data focuses on the protein-coding regions, directly identifying trait-associated genes. In this study, we tested the assumption by leveraging the recently available exome-based association statistics from the UK Biobank WES data along with two types of networks. We found that almost all trait-associated genes were significantly more proximal to each other than randomly selected genes within both networks. These results support the assumption that trait-associated genes are clustered in gene networks, which can be further leveraged to boost the power of GWAS such as by introducing less stringent p value thresholds.
期刊介绍:
Genetic Epidemiology is a peer-reviewed journal for discussion of research on the genetic causes of the distribution of human traits in families and populations. Emphasis is placed on the relative contribution of genetic and environmental factors to human disease as revealed by genetic, epidemiological, and biologic investigations.
Genetic Epidemiology primarily publishes papers in statistical genetics, a research field that is primarily concerned with development of statistical, bioinformatical, and computational models for analyzing genetic data. Incorporation of underlying biology and population genetics into conceptual models is favored. The Journal seeks original articles comprising either applied research or innovative statistical, mathematical, computational, or genomic methodologies that advance studies in genetic epidemiology. Other types of reports are encouraged, such as letters to the editor, topic reviews, and perspectives from other fields of research that will likely enrich the field of genetic epidemiology.