Julien Flamant, Konstantin Usevich, Marianne Clausel, David Brie
{"title":"偏振傅立叶相位检索","authors":"Julien Flamant, Konstantin Usevich, Marianne Clausel, David Brie","doi":"10.1137/23m1570971","DOIUrl":null,"url":null,"abstract":"SIAM Journal on Imaging Sciences, Volume 17, Issue 1, Page 632-671, March 2024. <br/> Abstract. This work introduces polarimetric Fourier phase retrieval (PPR), a physically inspired model to leverage polarization of light information in Fourier phase retrieval problems. We provide a complete characterization of its uniqueness properties by unraveling equivalencies with two related problems, namely, bivariate phase retrieval and a polynomial autocorrelation factorization problem. In particular, we show that the problem admits a unique solution, which can be formulated as a greatest common divisor (GCD) of measurement polynomials. As a result, we propose algebraic solutions for PPR based on approximate GCD computations using the null-space properties of Sylvester matrices. Alternatively, existing iterative algorithms for phase retrieval, semidefinite positive relaxation and Wirtinger flow, are carefully adapted to solve the PPR problem. Finally, a set of numerical experiments permits a detailed assessment of the numerical behavior and relative performances of each proposed reconstruction strategy. They further demonstrate the fruitful combination of algebraic and iterative approaches toward a scalable, computationally efficient, and robust to noise reconstruction strategy for PPR.","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Polarimetric Fourier Phase Retrieval\",\"authors\":\"Julien Flamant, Konstantin Usevich, Marianne Clausel, David Brie\",\"doi\":\"10.1137/23m1570971\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"SIAM Journal on Imaging Sciences, Volume 17, Issue 1, Page 632-671, March 2024. <br/> Abstract. This work introduces polarimetric Fourier phase retrieval (PPR), a physically inspired model to leverage polarization of light information in Fourier phase retrieval problems. We provide a complete characterization of its uniqueness properties by unraveling equivalencies with two related problems, namely, bivariate phase retrieval and a polynomial autocorrelation factorization problem. In particular, we show that the problem admits a unique solution, which can be formulated as a greatest common divisor (GCD) of measurement polynomials. As a result, we propose algebraic solutions for PPR based on approximate GCD computations using the null-space properties of Sylvester matrices. Alternatively, existing iterative algorithms for phase retrieval, semidefinite positive relaxation and Wirtinger flow, are carefully adapted to solve the PPR problem. Finally, a set of numerical experiments permits a detailed assessment of the numerical behavior and relative performances of each proposed reconstruction strategy. They further demonstrate the fruitful combination of algebraic and iterative approaches toward a scalable, computationally efficient, and robust to noise reconstruction strategy for PPR.\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-03-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1137/23m1570971\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1137/23m1570971","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
SIAM Journal on Imaging Sciences, Volume 17, Issue 1, Page 632-671, March 2024. Abstract. This work introduces polarimetric Fourier phase retrieval (PPR), a physically inspired model to leverage polarization of light information in Fourier phase retrieval problems. We provide a complete characterization of its uniqueness properties by unraveling equivalencies with two related problems, namely, bivariate phase retrieval and a polynomial autocorrelation factorization problem. In particular, we show that the problem admits a unique solution, which can be formulated as a greatest common divisor (GCD) of measurement polynomials. As a result, we propose algebraic solutions for PPR based on approximate GCD computations using the null-space properties of Sylvester matrices. Alternatively, existing iterative algorithms for phase retrieval, semidefinite positive relaxation and Wirtinger flow, are carefully adapted to solve the PPR problem. Finally, a set of numerical experiments permits a detailed assessment of the numerical behavior and relative performances of each proposed reconstruction strategy. They further demonstrate the fruitful combination of algebraic and iterative approaches toward a scalable, computationally efficient, and robust to noise reconstruction strategy for PPR.